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Henri Pad~ (1863 - 1953) 

Henri Euggne Pad~ was born in Abbeville (France) on Dec. 17th 1863. 

Admitted in 1883 to the Ecole Normale Supgrieure, he left it in 1886 with the 

highest teacher's degree (Agr~gation) in Mathematics. After teaching at the classi- 

cal secondary school in Limoges, Carcassonne and Montpellier, he was granted a leave 

in 1889 in order to study in Germany, first in Leipzig, then in G~ttingen. On June 

21st 1892, before the University of Paris, he defended his doctorate thesis on the 

approximate representation of a function by rational fractions. 

Henri Pad~ was appointed lecturer at the Faculty of Sciences of Lille 

in 1897, Professor of Rational and Applied Mechanics at the Faculty of Sciences of 

Poitiers in 1902 and Professor of Mechanics at the Faculty of Bordeaux in 1903. In 

1906, he was elected Dean of the Faculty of Sciences of Bordeaux and became Laureate 

with the major prize for mathematical sciences awarted by the Academy of Sciences 

on the report of Emile Picard. In 1908 he was named Rector of the Academy of 

Besan~on, he was then the youngest rector in France. In 1917 he became rector of the 

Academy of Dijon and in 1923 rector of the Academy of Aix-Marseilles, an office he 

kept until he retired in 1934. 

Henri Pad~ died in 1953 at the age of 89. 
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Editor's Preface 

In 1892, in the Scientific Transactions of the Ecole Normale Sup~rieure in 

Paris, the french mathematician Henri Pad~ published an article concerning the ap- 

proximate representation of a function by rational fractions. Three-quarters of a 

century later, the advent of arithmetical computers led scientists to consider va- 

rious methods of representing functions, especially rapidly converging functions. 

In a paper published in 1955, D. Shanks showed the advantages of pad~'smethod, 

which makes it possible to deduce from any converging or diverging series of powers 

a table of rational approximations of the functions represented by these series. 

Since then many physicists and applied mathematicians have studied the representa- 

tion of functions by means of rational fractions, the main object being to obtain 

ever faster computing algorithms. The most celebrated and now classic example is 

for calculating the sum of the following series: 

4 + . 4 4 4 + (_)n 2 n + I "" (I) S = 4 - --3 - + 5 7 "'" 

The sum S is equal to 7. But to obtain from series (I) -- which is a very poor al- 

gorithm -- the value of~correct to eight digits, the first term which is neglected 
-8 

must be less than I0 in absolute value, which means thatwe must consider 20 mil- 

lion terms. If however one applies Padg's D,I~ transformation repeatedly to the 

sum S of the first n terms, that is if one associates with the sequence S the new 
n n 

sequence 

- S 2 
Sn-I Sn+l n 

(2) v 
Ln = + - 2 S ' S n -  1 Sn+ I n 

t h e n  t o  o b t a i n  t h e  s ame  a c c u r a c y  i t  w i l l  s u f f i c e  t o  c o n s i d e r  o n l y  t h e  f i r s t  n i n e  

t e r m s  o f  s e r i e s  ( 1 )  a n d  t o  a p p l y  t h e  t r a n s f o r m a t i o n  (2 )  f i v e  t i m e s .  

The underlying principle of Pad~'s method is particularly simple. Given a 

power series 

co 

(3) ~ c k x k , 
k=0 

Pad~ proposed finding the closest approximation to the sum, by defining a rational 

fraction Pm(X) / Qn(X) , with 



m n 
(4) Pm(X) ~ a k x k = , Qn(X) = I + ~ b k x k , 

k=0 k = l  

in which the numerator and the denominator are polynomials of degrees m and n res- 

pectively. These polynomials Pm(X) and Qn(X) are determinated from the identity 

oo co 

(5) Qn (x) k= 0~ Ck xk - Pm(X) = xm+n+I k= O~ Yk xk 

This identity leads to m+n+l linear equations from which the unknown m+n+l values 

a k a n d  b k (b  = 1) c a n  b e  d e t e r m i n e d .  Pad@ o b t a i n e d  t h e  f o l l o w i n g  r e s u l t :  
0 

(6) A Pm(X) 

em-n+ 1 

= c 
m 

m 

j!O ej-n 

Cm_n+ 2 -.. Cm+ l 

Cm+ 1 ..- Cm+ n 

xj m xj ~ c. x j 
Cj-n+ 1 ... 

j=O j=0 j 

(7) A Qn(X) 

Cm-n+ 1 Cm-n+2 " " " Cm+ 1 

c m Cm+ 1 

n n - I  
x x 

Cm+n 

In these two formulae, it is necessary to take c. = 0 when j is negative, and A is 
J 

the minor obtained by eliminating the last line and the last column. 

Pad@'s rational approximations are widely used in computer calculations,because 

they are generally more efficient than polynomial approximations. They almost halve 

the number of operations required• These approximations are particularly convenient 

when one takes m = n ( defining the diagonal of the Pad@ table ). For in this case 

the coefficients Yk of the right-hand side of (5) usually decrease so quickly that 

the first term Y0 x 2n+I , divided by Qn(X), constitues an excellent approximate 

value for the absolute error introduced if one uses Pm(X) / Qn(X) instead of 



XI 

co 

c k x k. For Ixl < 1 , the value of Qn(X) differs very little from unity because 

k=0 
the b k coefficients usually decrease very rapidly. It will therefore suffice 

to calculate y , whence 
0 

(8) T 
0 

& 
n 

n 

A 
n 

c 1 c 2 

c 2 c 3 

Cn+ 1 Cn+ 2 

e 
n+ 1 

Cn+ 2 

C2n+l 

6n is the minor obtained by eliminating the last line and the last column. 

In an excellent article written for the collective work entitled "Mathematical 

Methods for Digital Computers" (published by John Wiley), Kogbetliantz shows that, 

irrespective of accuracy required, the Pad6 method is the best method for construc- 

ting programs for calculating sin x and cos x: 

(_)k 
(9) cos x = ~ z k x 2 (2k) ! with z = 

k=0 

Taking m = n, we have 

PI 12 - 5 x 2 
3 1 

Q1 12 + x 2 ' Y0 2 6! 

P2 15120 - 6900 x 2 + 313 x 4 
59 1 

, Y 
Q2 15120 + 660 x 2 + 13 x 4 0 42 I0! 

As we can see on the figure, the approximation P2 / Q2 which is constructed with the 



-I 

five first terms of the series (I) is better than the sum S 5 of those terms. 

! ! I I 

XII 

Sum S s 

/ 
/ 

P2 

Q2 

Exact value / 
I X  

5 

Approximations of cos x 

For m = n = 3, we obtain 

P3 

Q3 

I + a I x + a 2 x 2 + a 3 x 3 

] + bl x + b 2 x 2 + b 3 x 3 

with al 

a2 

a 3 = - 

3665 

7788 

71|  
25960 

2 923 

7 850 304 

229 
bl 7788 

I 

b2 2360 

127 
b3 39 251 520 



1407 I -12 
and Y0 = 2596 14 ~ < 7 . I0 

XIII 

Practically the approximation P3 / Q3 is put into the form of a continued fraction 

P3 C1 
(I0) = C0 + 

Q3 x 2 + Bl + 
C2 

C3 
x 2 + B 2 + - -  

x 2 + B3 

B 92.70474 
i 

B2 = - 3.50476 

B3 = 41.76065 

C = 23535.603 
i 

C2 = 4017.0378 

Ca = 1670.6950 

Since Co = 14 615 - 12-------~- one is led to calculate a small number from the diffe- 

rence between two large numbers, resulting in an inaccurate result. This drawback 

can be circumwented by substituting ~ z for z, the parameter ~ being chosen so 

that C0(G) is small. Finally the value of cos x is obtained over the interval 

(0, -~) to ten significant digits from this approximation; we use a rational frac- 

tion put into the form of a continued fraction, performing only four multiplica- 

tions and using seven constants. Calculating P~(z) / Q3(z) as a classical frac- 

tion would require eight operations. 

This short exposition of the Padg method explains why it has come to be wi- 

dely used since the advent of computers. The Pad~ method is currently being studied 

and used by three categories of scientists: numerical analysis specialists, theore- 

tical physicists and specialists in fluid mechanics. After the European symposium 

on Mechanics organized at the Toulon University Center in 1975, it was felt that 

it might be useful to gather together several articles devoted either to the fun- 

damentals of the method or to its applications in mechanics. This is how the pre- 

sent volume was born, and I am particularly indebted to Professor Beiglb~ck for 

having kindly included it in the Lecture Notes in Physics series, and to Springer- 

Verlag for having published it so quickly. 

Henri Cabannes 

January 1976 
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THE LINEAR a FUNCTIONAL EQUATION APPROACH TO THE 

S 

PROBLEM OF THE CONVERGENCE OF PADE APPROXIMANTS* 

GEORGE A. BAKER, JR. 

Applied Mathematics Department 
Brookhaven National Laboratory 

Upton, N.Y. 11973 

ABSTRACT 

The Pade approximant problem is related to a (not necessarily 

orthogonal) projection of a linear functional equation of the Fredholm 

type. If the kernel is of trace class and its upper Hessenberg form 

is tridiagonal (this class includes Hermitian operators), then we prove 

that not only do the diagonal Pade approximants converge, but so do 

their numerators and denominators separately. The generalization of 

these results to C classes of compact operators is given. For kernels 
P 

which are not only compact, but also satisfy an additional mild re- 

striction, a pointwise convergence theorem is proven. The application 

of these results to quantum scattering theory is indicated. 

*Work performed under the auspices of the U.S0 ERDA. 
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Considerable progress in the study of the convergence of Pade 

approximants can be made, I think, by the use of the techniques of 

functional equations. What I will report here is probably just a be- 

ginning, and is drawn in part from a previous paper.~l] First we will 

review the known relation of Pade approximants to linear functional 

equations, then we review the properties of some special classes of 

compact operators, and give convergence results for these classes. 

Finally we indicate how these results lead to convergence of Pade ap- 

proximants to the partial wave scattering amplitudes in certain quantum 

mechanical scattering problems. 

PROJECTIONS IN THE CINI-FUBINI SUBSPACE 

Suppose we consider the functional equation 

f = g + k A f (i) 

where f, g, and h belong to some Hilbert space Z, and A is a linear 

operator whose properties are yet to be defined. We also introduce 

the associated sets of elements 

Ai-i ' A % i-I 
~i = g ' ~i = ( ) h i = i, 2 ..... (2) 

where A % is the Hermitian conjugate operator to A. We need as well the 

N × N matrix 

! 

Ri,j = (~i' ~j) = (h, A i+j-2 g) (3) 

! 

defined in terms of the inner products of the ~j and ~i" We are now 

i n  a p o s i t i o n  t o  d e f i n e  o u r  p r o j e c t i o n  o p e r a t o r  o n t o  t h e  C i n i - F u b i n i  

subspace ~2] 

N 

PN = E ~i (R-l) ( ' 
i,j=l ij ~j' ) ' 

(4) 



provided detIR I ~ 0. (It can be shown t3~ that there exists an in- 

finite number of such N's.) The operator PN is a projection on SN 

I I 

from S N. (The spaces SN and SN are respectively those spaces spanned 

I 

by ~i and ~i for i = 1 ..... N.) It has the properties 

PNPM = PMPN = PM' M ~ N. (5) 

However, it may not be an orthogonal projection. If it is not, then 

its norm IIPNII will be greater than unity! We show in fig. 1 the pro- 

jection on non-orthogonal directions. It is clear in this figure that 

the "length" (a 2 + b2) ½ of the projection can be greater than the 

length of the original vector. 

i / / / ~  

/ 
Fig. 1 

Projection on non-orthogonal directions 
(heavy lines) of a vector (arrow) 

Wit~ this machinery, let us consider the truncated equation 

fN = g + k PN A PN fN" (6) 

By the properties of PN' we expect a solution of the form 

N 

fN = ~ a3 ~J" 
j=l 

The substitution of (7) leads to the solution 

(7) 



N N 

fN = ( E E $i V. wj l)/detl I (8) 
i=l j=l lj - uij ' 

where 

Uij = wi+j_ 2 - I wi+j_ I 

Vij = i, jth minor of (Uk~) . (9) 

Then 

N N 

(h,f N) = E E V wj i/det I (i0) 
i=l j=l wi-I ij - IUij " 

However this formula is Nuttall's compact form C4,5] for the IN-I/N] 

Pad~ approximant to h(l) defined by the Liouville-Neumann series 

f = g + k Ag + 12 13 A2g + A3g + ... , 

h(l) = (h,f) = w 0 + k w I + k 2 w 2 + ... 

(il) 

Thus by use of the projection operator (4) we generate directly the 

Pad~ approximants as the solutions of the truncated equations. 

RESULTS FOR THE TRACE CLASS OF COMPACT OPERATORS 

Here we will assume that PN is orthogonal. What does this re- 

striction imply about the linear operator A? To examine this question 

we use a basis e. determined by the ~_ so that the e. are orthonormal 
1 l 1 

and the first N of them span SN" Using this basis, we see that A is 

of the form 

I 
x 
x 

0 
0 
0 

x x x 
x x x 
x x x 
0 x x 
0 0 x 'I , (12) 
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that is, upper right triangular plus one subdiagonal. This form is 

called the upper Hessenberg form. Now if A = A t, this Hermiticity 

condition implies at once that A is tridiagonal. Therefore if we 

i 

choose h of eq. (2) equal to g, then the ~i define the same spaces as 

the ~i' and PN is orthogonal. But this conclusion depends only on the 

tri-diagonality of A which is more general than Hermiticity. The re- 

striction A = A t would yield only generalized series of Stieltjes, 

however our results extend them. 

Now let us define trace class operators. If the operator is 

trace class and A is tridiagonal in its upper Hessenberg form, then it 

turns out that the numerator and denominator converge separately. In 

order to define the trace class of compact operators we introduce the 

non-negative, definite, Hermitian operator 

T = A T A, (13) 

which has the eigenvalues and eigenvectors 

2 
T ~i = ~i ~i" (14) 

The trace norm of A is then 

11ATT 1 = z~, (15) 
l l  

which is something like Tr(IAI), and the trace class consists of those 

operators with a finite trace norm. Standard theory [6] insures that 

for an operator of trace class we can define 

where the D 
N 

sulting D(k) 

D(k) = detlI + kA I = lim DN(k), (16) 
N~ 

are the determinants in a sequence of subspaces. The re- 

is an entire function of k. We note at this point that 



some condition related to the trace of A is required as the Pade de- 

nominator must go to 

I - kEk? I + O(k2), (17) 
l 

i 

and, if 

-i 
El. = Tr(A) = ~, (18) 

1 

then the denominator can't possibly converge separately. 

In order to see the convergence in this case, it is convenient to 

construct the Fredholm solution to the truncated equations. To this 

! 

end we introduce an orthonormal basis Xi,i=l ..... N spanning ~N = ~N" 

Then 

If 

= (ki' fN = Aij AXj) , E b.ik.l, 

N 
b. = (X., g) + k E Ajkb k. 
] 3 k=l 

DN(X) = detNI~ij - XAij I ~ 0, 

then the Fredholm solution is given by 

fN = g + kEXjDN, jk(k) (Xk'g)/DN(k)' 

where 

N A. I k 2 1 3k Aj~ 
DN,jk(X) = Ajk - 1 ~. ~=llA~k A I + ~' EEl I + 

(19) 

(20) 

(21) 

(22) 

.... (23) 

and are automatically polynomials of degree at most N - 1 in k. If 

we choose the X. to be eigenfunctions of 
l 



and use Hadamard's determinant inequality 

Idet 

all 

anl 

• . . aln 

• . . a 

nn 

n N 

I < ~ ( Z laijl 2)½ 
i=l j=l 

then we can show ~I~ for any z in ~, of unit length 

N N 

{ Z I Z DN, jk(k) Zkl2}½ ~ 11AII 2 (i 
j=l k=l 

(25) 

22/2 11A11 + ~ 33/2 IIA112 + i. 1 . 1 + "'" )" (26) 

Thus the operators that give the numerator in the Fredholm solution 

are a sequence of uniformly bounded operators in N for all k provided 

the series in (26) converges. As IIAII 1 is finite the series does and 

IIAII 1 finite makes IIAII 2 automatically finite also. Standard arguments 

then insure the convergence of the numerators and eq. (16) gives that 

of the denominators. Hence we have the separate convergence of the 

numerator and denominator of the Pad~ approximants to the ratio of 

the two entire functions given by the Fredholm solution. 

C CLASSES OF COMPACT OPERATORS 
P 

We may define larger classes of operators than the trace class 

and obtain special convergence results for them. We say a compact 

operator belongs to class C if, using (13) and (14), 
P 

= Cz ~p~i/p < ~. (27) IIAIIp i 

The trace class is C 1 and these classes have the properties that 

Cp_ Ic Cp. We use the convenient notation, due to Nuttall, 
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P i 
~ F.x] p = ~ F.x 

1 1 
i=0 i=0 

(2s) 

for any formal power series. The results for operators of class C 
P 

are based on rewriting the Padd approximants as 

p (k) exp{_~nQN(k ) ]p-l} 
IN-l/N] - N _ PN (~) (29) 

QN (k) QN(k) exp{-~ ~nON (k) ~P-I } 

By applying arguments parallel to those of Dunford and Schwartz [6], 

we can show for P orthogonal and A in C that if we define 
N p 

- kA..)]p-l] (30) DN,p(k) = detN(6ij - kAij) exp{-~ndetN(Sij 13 

then 

lim DN, p 
N-= 

(k) = entire function of k 

exp (FIIAIIPkP), 

! 

and in the N X N truncated space 8N 8N 

limllDN,p (k) {(6ij 
- ~A .) -I - ~ . - ~A - ... - ~p-2 Ap-2]il 

13 13 p 
p-i 

< exp[F(k p All p + i)] 

where F is a finite, N-independent constant. By combining eq. (ii), 

(29)-(32) we deduce that we have the form 

(31) 

(32) 

p-2 
IimFN-I/N] = ~ kjh. + entire function 

j=0 3 entire function ' (33) 

where for A in C both entire functions in (33) satisfy 
P 

l entire functionl ~kexp(Bl p) . (34) 
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The modified numerator and denominator defined in this way converge 

I 
separately to entire functions, and thus, of course, the Pade approx- 

imant does too. The result for the Pade approximant itself is more 

general than for the numerator and denominator separately as we shall 

see below. 

COMPACT OPERATORS 

First let us consider the case where PN is an orthogonal projec- 

! 

tion (%N = 8N) " If we subtract eq. (6) from eq. (I) we get 

f - fN = k A (f - fN) + k (A - PNAPN ) fN" (35) 

Now if IIfNl I < ~, then the second term on the right hand side of (35) 

goes to zero as A is compact. Then eq. (35) becomes the form 

d ~ IAd. (36) 

Thus, if k is not a singular point of eq. (I), we may conclude d = 0 

by the Fredholm alternative theorem. Hence 

fN " f ' 

~N-I/N] = (h,fN) - (h,f) = h(k) . (37) 

If, on the other hand, I]fN1 ] - ~ for all N, we can define 

dN = fN / IlfNII ' (38) 

an element of unit norm. Eq. (6) becomes 

d N - k P~d N - 0. (39) 

As A is compact, there exists a subsequence of N's such that the limit 

over the subsequence exists and has the value 
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lim IAd = d, 
N 

(4o) 

magnitude of the element, 

PN A e N , 

where the e. are defined before eq. 
3 

construction 

PNAej --- Ae.,3 J ~ N - i. 

If we make the additional mild assumption that 

tion is misprinted in ref. i) 

lim infIIPl~AP Ae TI = 0, 
N-~ 

(43) 

(12), that is uncontrolled, as by 

(44) 

(note that this equa- 

(45) 

which implies, as A is compact, 

d - IAd = 0. (41) 

Since we are assuming k is not a singular point of (i), we conclude by 

the Fredholm alternative theorem that ]]dll = 0, which is a contradic- 

tion. Therefore there does not exist an infinite sequence of fN whose 

norm tends to infinity, but at most a finite number of such equations. 

Therefore we conclude if A is a compact operator and the PN are orthog- 

onal projection operators that when k is not a singular point of eq. 

(i) 

lim~N-i/N~ = h(1), (42) 

where the limit is taken over the infinite number of N's for which the 

Pad~ approximants exist.~3~ 

In the case PN is not orthogonal, less complete results have been 

obtained. The problem here is that the magnitude of IIPNII is uncon- 

trolled. In particular, insofar as we are concerned it is only the 
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where 

N 

= Z e. (e., ) (46) 
N j=l 3 3 

is the orthogonal projection on S N. Then we can prove:~l] 

Theorem: Let A be any closed bounded region in the complex k 

plane not containing a singular point of eq. (I) . Then either (i) a 

finite order Pad6 approximant to h(l) of eq. (ii) is exact, or (ii) 

eq. (42) holds, or (iii) for each I in A for which (i) and (ii) fail, 

there exists an infinite subsequence of N's such that (ii) holds for 

all other I in A. 

APPLICATION TO QUANTUM SCATTERING THEORY 

This application is a generalization of that of Garibotti and 

Villani.~7~ We consider the problem of potential scattering in non- 

relativistic quantum mechanics. The fundamental equation is the 

Schrodinger equation 

-V20 (7) + kV(r) 0 (7) = k2% (7) . (47) 

We restrict the potential function by assuming that V(r) is of single 

sign, spherically symmetric, and satisfies 

~ IV(r) lexp(21~Ir) rdr < ~. (48) 
0 

Then, for the partial wave decomposition of (47) we can show: (i) a 

slightly recast version of the kernel of the usual corresponding in- 

tegral equation is of trace class. (ii) The upper Hessenberg form of 

the kernel is tridiagonal. Thus the results we have reported show 

that the numerator and denominator of the [M/M~ Pad~ approximants 
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converge separately, and the denominator converges to the Jost func- 

tion, as one would hope. These conclusions hold if IIm(k) I ~ ~. 

In as much as Fredholm equations appear very frequently through- 

out the field of mechanics, the potential applications of these con- 

vergence results in the area of this conference seems to me to be very 

large. 
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~CONSTRUCTION OF VARIATIONAL BOUNDS FOR THE N-BODY EIGENSTATE PROBLEM 

BY THE METHOD OF PADE APPROXIMATIONS 

D. Bessis 
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CEN-Saclay, BP n°2 - 91190 Gif-sur-Yvette - France 

We first recall how the Pad~ approximations applied to the resolvant of a 

N-body Hamiltonian generate new improved variational principles for the fundamen- 

tal and the excited states, which generalize the Rayleigh-Ritz principle. In this 

scheme, the Rayleigh-Ritz principle is deduced from the lowest Pad~ Approximation, 

we therefore analyse completely the content of the next approximation, which gives 

rise to a variational principle in which is embedded the knowledge coming from 

more terms of the resolvant expansion. 

An application to the case of N fermions interacting via a two-body potential 

which is itself a sum of Gaussian potentials is analysed. We show that in this 

case, the reconstruction of discrete eigenstates and eigenfunctions can be done 

in a purely algebraic way without any multiple integral calculations : the eigen- 

states being approximated by a monotonously decreasing sequence rapidly conver- 

ging° 

In the conclusion we recall how the method extends to singular potentials 

(hard cores) and a very simple two-body problem is tested numerically for illus- 

tration. 
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INTRODUCTION 

In physics one is often faced with the problem of expanding a given quantity 

G in terms of an expansion parameter 

G(~) Go + ~GI + "'" + ~nGn + ... (I-I) 

Four cases can happen 

I) The series (I-i) is, for the "physical" Value of ~ , convergent and 

rapidly convergent. One can therefore consider that (I-I) solves the problem. 

2) The series (I-I) is convergent but too slowly to be effective. Eq. (I-I) 

is therefore, as it stands, useless for this precise problem:. 

3) The series (I-I) is divergent for all ~ , but asymptotic. If the physical 

value of ~ is sufficiently small, then again (I-I) can be considered as solving 

the problem because the "effective convergence" could be extremely good. 

4) The series (I-I) is divergent for all ~ , and has no asymptotic properties : 

(I-I) is useless as it stands. 

Most of the time, one is left with cases 2 and 4, for which it is necessary 

to apply an "accelerator of convergence", among which the Pad4 Approximation is, 

for deep reasons, one of the most powerful. 

More generally one can ask the following question : 

Given a finite number Go, GI, ..., G N. of coefficients in the expansion 

(I-I), find "the best" upper and lower bound for G(a), 

~(~; Go,G I .... ,G N) 5 G(~) 5 ~+(~; G O ..... GN )~ 

How does one construct the unknown functionals ~+ ? Of course the problem makes sense 

only if, not only the Gi, O 5 i < N are known, but also if additional properties 

of the function G(~) are given, in such a way that the bounds are achieved for 

G(~) in a precise class of functions. 

For instance, if G(~) fulfills a dispersion relation with respect to ~, with- 

out subtractions, with a positive discontinuity, that is G(~) is a Stieltjes 

function : 

G(a) = So ~<x)dx o(x) 0 
I + x~ ' ~ ' 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

~W~en G(~) is complex, one has to deal with inclusion domain see Ref~(1). 
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then for ~ real and positive the functionals ~+ and ~ are given respectively 2) 

by the IN/N] and [N-l/N] Pad4 ApprQximants built up from the coefficients G. 
i 

(0 < i < 2N) or (0 < i < 2N-I). 

Another example is provided by the case where 

G(~) = ~o e "°cx p<x)dx , @(x) ~ O, (1.3) 

namely if G(~) is the Laplace transform of a positive measure. 

Then the functionals ~+ are given by Generalized Pad4 Approximants [N/N] 

and [N-l/N] built up on t~e coefficients G. 3) 
i 

An interesting fact~ for those two examples, is that the functionals exist 

independently of the convergence or divergence of the series (I-I) which may very 

well be divergent for all ~ . The problem is best expressed in terms of informa- 

tion theory : given the class to which G(~) belongs, given a finite number of its 

derivatives at ~ = O, what is the best upper and lower bound which one can expect 

for G(~). 

Even more interesting is the case of variational bounds, that is the case 

where, for some reasons, the G i themselves do not exist and need regularization~ 
4) 

for instance in the so-called case of singular interactions . Then if G(~) is re- 

gularized into Ga(~) by means of a small regularization parameter a and if fur- 

thermore : 

G(~) < Ga(~) , (I-4) 

; G ~ ; e ; E if finally we can derive the functional ~+(~ o GI "''' GN) for Gg(~), then 

we find 

_ G E E G E 
G(~) < GE(~) < ~+(~ ; o ; GI ; "''' N )" (~-5) 

This gives the variational bound : 

G(~) < inf ~ (~ ; G ~ E e o ; GI ; "" "GN) (1-6) 

Even though the regularized Taylor coefficients of G(~) tend to infinity 

when E -~ O, the functional --~ will have a minimum for some gN' which at that 

value of N will depend on ~ o This gN(~) is the best choice of the cut-off regu- 

lator for the information contained in the Taylor series stopped at order N. Such 

a scheme has been extensively used in ref. (4). 

Let us come now to a very well known case. Suppose we consider the mean value 

of the resolvant of a Hermitian operator H in Hilbert space, having a negative 
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discrete spectrum Eo, El,... , and a positive continuous spectrum, typically a N- 

body Hamiltonian in Quantum Mechanics. Then the resolvant reads : 

z j~> (m-7) (z) = <~J l+zH cp 

and if we expand it formally, we get : 

~(z) = z ~ (-z) n <~IHnlg> (I-8) 

n=O 
The operator H being unbounded in general, the moments <~IHnl~> are all 

infinite, except if I~> belongs to the domain of all the powers of H. Let us suppo- 

se first that we choose ]~> in such a way that <~IHl~> exists. 

Then, the Rayleigh-Ritz variational principle asserts that the ground state 

energy E fulfills : 
o 

Eo 5 i~i v l~>~ , (I-9) 

E ° = inf ~ ; (I-I0) and 

Therefore the knowledge of only the first term of the expansion (1-8) allows 

us to build up a variational functional for the lowest eigenstate of H. It is 

important to remark that the series (1-8) has a zero radius of convergence for a 

generic l~>: this is so because R (z) is singular at z equal zero due to the fact 

that the spectrum of H extends to ~. The point z = O being a singularity of R (z) 

the radius of convergence of (1-8) is of course zero. Nevertheless the bound (1-9) 

holds. 

Now the interesting question is : 

Given more moments : ~R = <~IHkl~> (I-II) 

of the expansion (1-8), can one improve the bound (1-9) and more generally%can one 

derive variational principles not only for the ground state E0, but also for El, 

E2,... the so-called excited states ? The answer is yes, and it is the Pad4 Appro- 

ximation technique which is the generating tool of these variational improved 

Rayleigh-Ritz principles : we shall call them the Pad~-Rayleigh-Ritz principles. 

Furthermore, these bounds can be shown te be the best possible 5) which, one can 

construct from the knowledge of only a finite number of moments ~k : 

II - THE PADE-RAYLEIGH-RITZ PRINCIPLES. 

Given an even number of moments ~o' ~i' "''' ~2N-I" 

We construct the following determinant (which is the denominator of the [N/N] 

Pad~ approximation built up on the resolvant) 
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A (E,N) 

ko kl ° ' "  ~N 

~I ~2 "'" ~N+I 

..o...i.°.,. 

~LN-I ~N " ' °  ~2N-I 

I E °.. E N 

( I f - l )  

A (E,N) is clearly a polynomial of degree N in Eo It can be shown 5" ~ that the N 

roots of A (E~N) are all real and distinct and therefore we can order them : 

(N)< _(N) E(N) < .o< ~(N) (II-2) 
Eo KI < "'" < p ' ~N-I 

Furthermore E "N" ( ~ is an upper bound to the pth 
P 

excited state of H 5). 

E < E (N) 
O O 

E 1 _< E~ N) 

Ei -< E!N)I (II-3) 

,.,,,o,.,, 

.(N) 
E N 5 mN-I 

The true eigenvalues E are of course independent of the test vector J~> we choose, 

but clearly the bound ~(N) is dependent on I~>because the moments ~k are dependent 
P 

on I~> • Therefore 

< inf E~N)(~) . (11-4) E L _ J~> 

More precisely we have 4) 

E L = inf ~N)(q~) (11-5) 

I~> 
In that way, we generate variational principles for the excited states. A further 

interesting fact is that if we now increase N by one unit, one proves that 5) : 

E (N+I) - ELN)((%o). (II- 6) I % 

L ~) < 

In other words, by adding more moments, we are sure to improve the variatio- 

nal principle for the i th excited state° 

(i+l) < E (N+I)" "<E (N)" " < < (~) (II-7) E i . °'° .5 i L~)- i ~)- "'" - E i ° 
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Even if we do not use the variational~.~ properties in I~> of the E~N)(~) bounds, and 

consider the sequence of the Ei~)(9)at fixed I~> , the sequence decreases monotonous- 

ly towards E L and in cases of practical interest (l~kl j (2k)!) the sequence con- 

verges very rapidly towards E L . 

However here, we do not want to make use of the convergence of the bounds 

(11-7), (because for the N-body problem, for instance, it is not easy to compute 

too high moments) but rather use them as new improved variational principles. 

Then 

For N=I, we have 

~o ~I 
A (E,I) = 
~0 I E 

= FoE - ~I 

That is using (11-5) 

(II-8) 

E(1) ~I 
o = ~ = (II- 9) 

E = inf E (I) = inf <~IRI~> 
o I~> o i~> <~I~> 

we find the Rayleigh-Ritz variational principle. 

(1I- lO) 

III - THE CASE N=2, OR THE PADE-RAYLEIGH-RITZ VARIATIONAL PRINCIPLE. 

For N=2 we get 

A (E, 2) 

~o 14]. ~2 

= ~I ~2 ~3 
i E E 2 

(111-I) 

Introducing the deviations : 

<~I~> " 
~o (I11-2) 

83 = <~ lq0> 

we get, solving 

(111-3) 

Z~ (E,2) = 0 

(iii-4) 
_(2) = ~ /(83 63 
E1 + ~2 )2 + 62 + 26--~ 
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In particular we obtain for the ground state E ° the improved variational 

principle : 

.63 .2 6 3 
E " inf ~ - [ 2 ~ ' 2 )  + 8 2 - ~ ] ] (III-5) o j~> 

we remark that, 8 2 being always positive, the quantity : 

E2(~ ) [ /.83 .2 8 
= ,28~ ) + 82 - ~2 ] (III-6) 

is always positive, and therefore comes subtractively to the Rayleigh-Ritz ordi- 

nary principle : it can be considered as the correction to it, induced by the 

extra information coming from the knowledge of the second and third moment. 

By changing the sign of the square root, we get the variational principle 

for the first excited state : 

(03 ) 2 
E 1 = inf [ ~  + ~2 + 62 + ~263 ] (III-7) 

J~> 

On (III-5), we see that if 62 is smell,that is if J~> is already near to the 

exact ground state eigenfunction; , the correction e2(~) is small;if on the con- 

trary 82 is very large, the correction a2(~) , being an increasing function of 

62, becomes large and that large correction will improve the bound significantly. 

Even if 82 is small, the precision on E ° ~s very much improved. As shown en 

numerical examples, factors as large as Io on the precision are gained by using 

the Pad4 principle with respect to the usual Ritz principle° 

Finally we want to point out the important fact that g2(~) is also a monoto- 

nously increasing function of 83, as checked easily. Therefore if we replace 63 

by a rough upper bound, (or equivalently ~3 by an upperbound), we still get a 

variational principle for the ground state : 

8~ 83 
E = inf ~ \~J~/ ~ H ~  )2 + ~2 ] ] (III-8) o I~> 

where 67 is an upper bound of 63 ~ obtained by using an upper bound for ~. Eq. 

(111-8) shows also clearly that, if only 62 is known, then it is not possible 

to improve the ~tz principle, because when 83 ~ +~, a2(~) ~ Oo Therefore the 

knowledge of 63~ even through a very crude estimate, is fundamental in this me- 

thod. (see a physical consequence of this last statement in section V) o 
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IV - THE EIGEN-FUNCTION APPROXIMATION. 

Let us suppose, from now on, that we have normalized the test vector I~> : 

<~I~> = +I. (iv-l) 

Then, following refo (5), the approximate ground state eigenfunction, for the 

N=2 case is : 

E 2 
I®~2)> = I~> - ~ (H-~)I~> (iv-z) 

It is easy to check that, if we use I~2)> as a test vector in the Rayleigh-Ritz 

variational principle, we get the Pad~-Ritz principle that is : 

<®~Z) IHI%(Z)> = <~lnl~> " l - 4  )z+ 62 - ~ - I  
<0o ~2) io~')> (IV-3) 

The reader will notice that ' { -l~'2)>and E (2) are the ground state eigenvalue 
O O 

and eigenvector of P2 H P2, where P2 is the projector onto the two-dimensional 

space ~(2) spanned by the vectors I~> and HI~ > . This remark can be completely 

generalized, and is linked to the fact that the Lanczos method fer matrices, and its 

generalization to Hilbert space the tri-diagonalisation Jacobi method, are 
6) 

deeply linked with the theory of Pad~ Approximation . 

To end up this section we give the formulae generalizing (IV-2) for the N th 

approximation. 

Introducing the normalized polynomials : 

The L th 

The 

~(E,N) A(E,N) 

~/GNGN_ I 

~O.....~N 

~ . . . . .  g2N 

> 0. (iv-4) 

approximated eigenfunction at order N is given by : 

N-I 

L - 
j=O 

I~-N$ are obtained by diagonalizing the Hermitian matrix 
ILl 

(Iv-5) 

= PN H PN (IV-6) 
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where PN is the projector onto the N-dimensional space spanned by the vectors I~>, 

HI~>,..o HN'I]~>. 

(N)\ar e While the ~L / orthogonal but not normalized,the A(H,j) I~ > are a set 

of orthonormal vectors because it is known that the A(E,N) form a set of ortho- 

gonalized polynomials with respect to the spectral measure of the operator H 5) . 

V - APPLICATION TO A SYSTEM OF N FERMIONS. 

To apply effectively the Pad4-Ritz principle (IV-5) it is necessary to find 

a way to compute easily the moments 

~k " <%o I Hkl~0>~o (v-l) 

In the Z-body problem the moments are given Z-uple integrals which are difficult 

or even impossible to compute if k is large. However, there are cases in which 

the moments can be reduced to entirely algebraic expressions. 

An example is given in ref. (5)~ for the case of the most general d-dimensio- 

nal anharmonic oscillator, by choosing a suitable variational test vector I~> • 

Here we want to consider the case of Z fermions interacting via a two body 
Z 

potential : Z ~ 2 ~ ~pi )2 

P2 ~ ~ i-I 
HZ " ~ ~ + I V( Iri'rj ]) 2M (V-2) 

i =I i i<jsZ 

where we have subtracted the center of mass energy. 

We shall suppose that V, the two-body potential is a superposition of Gaussian 

potentials : 
. 2 

V( l~i-~ j I) " Ol S Pp ([~i-~j ] 2) e- ~P(~i-~J) (V-B) 

p=l 

(where P (x) is a polynomial in x~With such a superposition, we can build up a 
P 

large class of phenomenological potentials, The interesting case of hard cores 

will be postponed to a further section. 

We must now choose the test vector in such a way that 

I) The Z-uple integral reduces to an algebraic calculation. 

..... ~--~-~-~5~z9-y~-~55~5~-~-~[~9~9-~5-~--5~z-f~ illed. 

~]~> is a given vector~ by using "m~trix" Pad4 Approxlment most of the results 
exposed here generalize to the case where ]~> is a set of vectors I~i> , ]~2> 
o.o l~R>, generating a "model" space. 
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We shall choose i~> to be an arbitrary sum of Slater determinants built up 

with the states of the harmonic oscillator. 

P 
-+ 

<:I'~2 ..... rz> = I o~> 1 
t=i ~-F. 

-+ -+ -~ -+ 

%0 o(rl, t) o..go(rz, t) 
-+ -+ 

~I (31' :)"" 91 (rz' t) 
. ° ° ° ° , . . , . ° . ° o . , ~ ° .  

-+ -+ -+ 

9z-l(rl' t)...~Z_l(rz-t~ 

(V- 4) 

-+ -+ 

where the Qm(r,t) are a set of orthonormalized harmonic oscillator eigenfunctions : 

with 

-~-~ = (X, tl) o 9m2(Y,t2) . (V-5) %°re(r, t) %°ml %°m3 (z, t 3 ) 

2 
. tlx2 

9ml(X,t I) = L~ 2 TM m! t: I] -1/2 Hml(tlx) e Z (V-6) 

and analogous expressions for 9m2(Y,t2) , 9~(z,t3). The Hm(P) are the usual 

Hermite polynomials. 

The parameters ~ and : are the variational parameters to be used in the 

calculation. 

Combining all these informations and taking into account the fact that the 

derivative of a polynomial times a Gaussian is again a polynomial times a Gaussian 

we see that the moment ~k will be of the form : 

-Q:(71 ..... r~z ) 
~Ik = ~ S d:l'''d:z P~(:I .... :Z ) e 

where Q~ is a quadratic positive form of the ~i : 

Z 

r i o rj. Q~ -= qij 
i=j=l 

and P is a polynomial in the variables ~i,o. "'~Z" 

Therefore, we are left with integrals of the form : 

4~ ~ I (xi2Xj2)~ 2..o a m Z 2 :xx ) oxp  Z (XilXj I) im Jm 
i,j~l 

(v-7) 

(v- 8) 

qijxixj } 

(v- 9) 
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which are equal to 

~I+~2 + +~ Z/2 

(-)~l+~2"''+~m ~la "''~m m ~ ~ 1/2 ~ (v-lO) 

a a (Det qij) 
qilJl- • • q~mJm 

In principle the calculation is straighforward and purely algebraic. In prac- 

tice the enormous number of terms to consider limits the possibilities to the cal- 

culation of the first three moments. Even for the third moment one may have to 

consider one thousand terms contributing. This means that it is necessary to use 

the variational Pad6-Ritz principle with the upper bound on 63 . As a consequence 

it is important to know how to get not too bad upper bounds for 

6 3 = <~ [(T-}) + <V-~)] 31~>o 

This problem will be considered in future work. 

(V-If) 

VI - THE CASE OF AN INFINITE NUMBER OF BODIES 

Let us consider the case where the number Z of bodies tends to infinity. Let us 

suppose that the ground state energy per body, E(Z)/z" has a finite limit when Z 
o 

tends to infinity and that this limit E ° is such that 

E (Z) 
o E < for Z > Z (VI-I) 

o Z o" 

This case seems to be not unlikely for nuclear physics. Then we can use the 

Rayleigh-Ritz principle and write : 

or 

E(Z)o <~IHz I~> 

Eo < Z < -~<~ I ~> (VI- 2) 

<~ IHz I~> 
= inf inf (Vl-3) 

E° z Iv> z<~l~> 

If we use the Pad6-Ritz principle we get 

< IHgI > i 6 <z) 
E = inf inf E ~ - ~ ~ I ~ 7  q- 62(Z) - ~ ~ ] 
o z l~> 
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It is interesting to notice that while we can replace (VI-3) by : 

E = inf lim (VI-5) 
o I~> g~ <~J~> 

because we expect the limit for not too bad I~> to exist and be meaningfull, in 

general the limit of the correction term when Z ~ ~ will be zero 7), and so no 

improvement will be achieved by the rad6-Ritz principle if we take brutally the 

limit Z~. Instead, if we look for the inf in Z, it is clear that this inf will 

give a better upper bound to E than the R~yleigh-Ritz principle, as best shown 
o 

on Fig. Io 

Eo(Z} 
Z 

E R 
@ 

Eo I 

1 
Zs2 I/z 

E(Z) 
o 

Z 

Fig.l - E(Z)/z as a function of I/Z. and its approximations° 
o 

We see that Eo, P (the Pad~-Ritz approximation) will be always better than Eo, R 

the Rayleigh-Ritz Approximation . 

It will be for some value ZB2 (Z best) that we achieve the best upper bound for 

E ° This technique clearly uses the number of bodies itself as variational parame- 
o 

tero If one takes the next Pad~ Approximation, one gets a new ZB3 which gives an 

improved upper bound for E o. It is possible to proove that this sequence of mini- 

mum converges to E in very general cases 4j. ~ 
o 

A very analogous technique can be used to treat the case of hard core poten- 

tials : one regularizes the potential and then uses the cut-off as a variatio- 

nal parameter, see ref. (4) and (5) for a detailed discussion.and forthcoming 

paper. 

Before ending this section we want to point out the important fact, that, as 

explained at the end of section III the knowledge of only 62 cannot improve 

the calculation by no means, and that some knowledge of 63 (upper bound) is 

necessary. But up to third order, the deviations (III-2), (111-3) are identical 
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to the cumulants which occur in the Ursell-Mayer cluster expansion. This suggests 

that (in that scheme) some knowledge of the three-body correlations is necessary s 

together with that of two-body correlations (Brueckner) to improve, in ~ a variatio- 

nal framework~ the result one can obtain from an independent particles approximation. 

VI - A NUMERICAL EXAMPLE. 

As numerical example, let us take the one dimensional harmonic oscillator : 

H = p2 + x 2 d 
; p = -i dx (Vl-l) 

The ground state of which is known exactly to be 

E = I (VI- 2) 
o 

As test vector we take 

_ 2(x_ ~) 2 
<x]~> = e (Vl-3) 

The exact eigenfunction is obtained for ~=I and 8-O° 

The deviations are easily computed for (VI~3) and one gets : 

= ~ I 62 = ½(~ + ~) + . (vl-4) 

1 1)2 + 2~ 2 (VI-5) 
~2 -- ~ (~  - 7 

63 = (~ + I)(~ _ 1)2 + 262(%_ I) (Vl-6) 

We shall take ~as~variational parameter and 8 as a fixed parameter. 

Then we get : 

1 !) 2 
ERayleigh_Ritz = inf ~ (~ + + (Vl-7) 

0<~ 

Epad~_Rit z - inf { 1 +I) 2 2+ % 53 ~(~ + - - (vl- 8) 
O<~ 

For ~ - 0 we have : 

ERR 

EpR 

. } 
I f3 1 2 

(vl- 9) 
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We see that while only the first derivative of ERR(S) vanishes at ~ = I, the first 

two derivatives of ERR(S) vanish at ~ = i. Of course in this case both minima 

are equal and equal to the exact value. 

We give now a little sunmmry of the numerical results for three typical values 

of ~ . 

2~ 2 

0 

0.01 

o;1 

I. 

Exact value Rayleigh-Ritz value Pad~-Ritz value Improvement factor. 

O 
I I. (exact) I. (exact) ~ = 

I i. 005 I. 00000025 20 000 

I 1.05 1.000195 

I I. 5 1.0583 

250 

8 

We have defined the improvement factor by : 

E l ~ y l e i g h _ R i t z  - E 
I = exact ~ __2 for ~ small. (Vl-lO) 

Epad~-Ritz - Eexac t ~2 

We see, that~ even when the Rayleigh-Ritz method becomes meaningless for 2~ 2 = i, 

the Pad~-Ritz method still gives no more than a 6% error. 

CONCLUSION 

The method presented here has the great advantage to be variational and there- 

fore completely independent of how big would be the coupling constant in the 

Hamiltonian 

H = H + k V  
o 

for a N-body system. %t can be thought as representing what would be "the next 

corrections" to the Rayleigh-Ritz variational principle. It necessitates to build 

up those new improved corrected variational principles, the knowledge of more 

perturbative terms in the formal expansion of the resolvant of H. 

When we deal with N-fermions and a two body potential superposition of 

Gaussian potentials we have seen that all calculations can be done algebraically 

and a simple numerical easily testable example as shown that improving factor as 

large as two to four order of magnitude in the precision can be expected. 



31 

The problem when dealing with hard-core potentials can be looked in Refo 4 : 

it will be fully analyzed in a forthcoming paper. 
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I am reviewing work on many-variable approximants carried out 

by a group of applied mathematicians at the University of Kent, 

Canterbury, since September, 1972. I reviewed a considerable part 

of this work in a talk given in Marseille I in 1973, and much of it 

is now published. In writing this account, I shall therefore give 

only those technical details which are necessary for a broad under- 

standing of the approximation method, and shall try to put into 

perspective the work that we have done; this review is necessarily a 

view based to some extent on my personal recollections. It is 

important to realise that, after the production of my initial paper 2, 

a group of about six were working and discussing problems almost 

every day throughout the winter of 1972-3. There was, in con~quenc% 

a considerable amount of give-and-take in the development of work, 

although the authorship of the various papers gives a very fair idea 

of the contribution made by each member of the group. We also 

benefited from some discussions with other members of the School of 

Mathematics. 

During my visit to Texas in 1965-6, John Gammel and I several 

times discussed the possibility of inventing a two-variable 

generalisation of Pad& Approximants, and I looked at the problem on 

a number of occasions between 1966 and 1972. In 1972, John Gammel, 

with Charles Critchfield, proposed a two-variable generalisation 3, 

but noted that their scheme differed in certain basic respects from 

the Pad& method for a single variable. A few weeks later, I made 

another attempt to solve the problem. 

The core of the problem seemed to me to be the definition of an 

analogue of diagonal Pad& approximants, since these approximants 

possessed several characteristic properties which should be shared 

by any two-variable generalisation, and were therefore the most 

closely restricted class. There were other properties of two- 
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variable approximants which also seemed very desirable, for which 

there was no analogue for a single variable. The properties I 

wished to satisfy were: 

(i) Defining Property 

Using the notation z = (Zl,Z2) , y -- (71,72) and ~~ = (~,~), a 

double power series 

f(z) : ~ c z~ 
y=o ~ 

is given. The diagonal approximant is to be a rational polynomial 

function ~ a s ~ z ~ 
~cp ~ 

m (2) 
fm/m(Z) = ~ b B z~ ' 

~cp ~ 
m 

where Pm is a finite set of lattice points with ar(r=l,2) taking 

values on set {O,1,2,...}. The ratios of the coefficients a s and b B 

are to be determined by a set of linear equations, formed by 

equating to zero the coefficients of z I~ in the expression 

- a z ~  , ( 3 )  E ( z )  : b ~ z  o - -~- 
m ~ ~ m 

} t a k i n g  v a l u e s  c o r r e s p o n d i n g  t o  a l l  l a t t i c e  p o i n t s  i n  some s e t  Qm" 

(ii) Symmetry Property 

In order to preserve symmetry between z I and z 2 in the 

definitions, the sets Pm and Qm should be symmetric between the 

pairs of suffixes, for example, between I 1 and 12 . 

(iii) Existence and Uniqueness 

The number of points in the set Qm should be twice the number 

in Pm' less one, to provide the correct number of equations. The 

determinant of coefficients should, in general, be non-zero. 

(iv) Homographic Covariance 

Suppose that the substitutions 

ArW r 
Zr - I+B w 

r r 
, (r=l,2) (4) 
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where A r are any non-zero complex numbers and B r are any complex 

numbers, are made in the series (i), and formal term-by-term 

expansions give a series 

~ 2 I ArWr ] Yr 
gown-- d o c  l 7 rWr j 

Then if gm/m(W) is the approximant defined from the series g(w), it 

should be given by 

I AlWl A2w 2 ] 
gm/m (w) = fm/m ~l+~lWl , 1 +~2w2 j (6) 

Iv) Reciprocal Covariance 

The [m/m] approximant formed from the reciprocal of the series 

-I 
Efm/m(Z)~ 

(vi) Projection Property 

If z2~O , the series (i) becomes a series in the single variable 

z I. The Pad~ approximant to this reduced series should equal 

fm/m(Zl,O) • 

(vii) Convergence in Measure 

There should be an analogue of Nuttall's theorem 4 on convergence 

in measure of diagonal sequences of Pad6 approximants. 

It was not possible to consider convergence theorems before 

defining the approximants, so the problem was one of choosing the 

lattice regions Pm and Qm so that conditions (i)-(vi) were satisfied. 

The problem was like solving a jig-saw puzzle : difficult and in- 

comprehensible while one examined one or two pieces at a time, but 

as the pieces began to fit together, leading rapidly to a solution; 

apart from a relatively minor problem over symmetry, the definition 

of two-variable diagonal approximants satisfying (i)-(vi) emerged 

after two or three days work, and was then submitted for publication. 

At this stage, though, existence and uniqueness of the approximants 

(I) should equal 
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had not been properly studied. 

The region Pm that I eventually chose was the square O~Xr~m , 

denoted by S 1 in Figure i. The number of points in Qm had to be 

2(m+I)2-i to satisfy property (iii); the projection property (vi) 

could be satisfied if Qm contained the points up to (2m,O) and (O,2m) 

along the "axes" of the lattice. These two requirements suggested 

that Qm might be a triangular-shaped region such as SI+$2+$3 in 

Figure 1. This left me short of m equations, however; the points 

(2m+l,O) and (O,2m+l) could not be used, since they would usually 

lead to overdetermination of the Pad~ approximants to f(Zl,O ) and 

f(O,z2); excluding these points, the next line $4, with equation 

hl + X2 = 2m + 1 , 

contained 2m lattice points, out of which I had to select m. To 

preserve symmetry, I thought of equating to zero the sum of 

coefficients in E(z) corresponding to pairs of points 

(h,2m+l-~) , (2m+l-l,l) (7) 

with X = m+l,...,2m; this would provide m "symmetrised" equations. 

Geometrically, the reason why only half the equations on S 4 are 

required is that we need to choose half the points (less one:) from 

the lattice square O~Xr~2m+l; the line S 4 is a diagonal of the 

square, and is "shared" between two triangles. 

I showed that the covariance conditions (iv) and (v) reduced to 

a geometrical condition on the lattice, called the "rectangle rule"; 

it states that if h is a point of Qm then all points in the 

rectangle R of Figure 2, with diagonal running from O to X, must be 

in the set Qm" This does not of itself imply that the boundary of 

Qm (excluding the axes) should be a line making an angle ~ with the 

axes. However, if h is a "symmetrised point", contributing to a 

symmetrised equation, no other points in the rectangle R may be 

symmetrised points. So all symmetrised points must lie on a single 
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line making an angle ~ with the axes, and if symmetrised equations 

are adopted, one is forced to choose the triangular configuration of 

Figure i. The fact that Qm may not contain points (2m+l,O) and 

(O,2m+l) means that the triangle can be no larger, and that the 

configuration is unique. 

When I showed this solution to Peter Graves-Morris and 

Dick Hughes Jones, they quickly pointed out that the constants AI,A 2 

in any transformation (4) had to be equal if the form of the 

symmetrised equations (from $4) were to be preserved, and that a 

change of scale of only one variable changed the relative weights 

of the points (7) in these equations. My choice of equal weights 

was therefore arbitrary; this problem of weighting has been fully 

studied, and I shall discuss it later. 

Two additional properties of the approximants I proposed were 

established 5 by Alan Common and Peter Graves-Morris: 

(viii) Unitarity Property 

The (diagonal) approximants of a unitary function are unitary. 

This property is derived directly from reciprocal covariance, as for 

Pad~ approximants, and is of particular importance in quantum 

scattering theory. 

(ix) Factorisation Property 

The [m/m] approximant to a function of the form f(zl)g(z2) is 

fm/m(Zl)gm/m(Z2 )- 

John Gammel pointed out a further property6: 

(x) Addition Property 

The [m/m] approximant to a function of the form f(zl)+g(z2) is 

fm/m(Zl)+gm/m(Z2). 

The last two properties, like reciprocal and homographic covariance 

and the projection property, are important in showing that the 

approximants behave in many respects like the functions they 
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approximate. 

In the paper that I published 2, I wrote out a list of possible 

generalisations and further problems, and a group of staff began to 

work on several of these problems. Alan Genz began to study methods 

of acceleration of convergence of double sequences, some of them 

suggested by the two-variable approximation, and he is reporting 

some of his results at this colloquium. Dick Hughes Jones, 

Peter Graves-Morris and Gordon Makinson (working on his own initiall~ 

began to study the algebraic properties of the linear equations, 

while John McEwan and I looked for a generalisation of the diagonal 

approximants to three variables and N variables, imposing the same 

geometrical conditions, notably the "rectangle rule". 

John McEwan became involved in the work when I explained to him 

the geometrical nature of the problem of diagonal approximants for 

triple series. In our search for the 3-dimensional configuration, 

he and I first thought of a rather complicated configuration. I 

asked my daughter Carol to make a model of the volume proposed; next 

morning, when she had done this, it was evident that the rectangle 

rule was violated, and we then thought of a much simpler volume 

region, which seemed to be right. Again I asked Carol to make a 

model of this solid, explaining that its volume was twice the volume 

m 3 of the cube shown in Figure 3. Next morning she had made four of 

these models, and pointed out that they fitted together exactly to 

make a cube of volume (2m) 3; two of these solids are shown in 

Figure 3. We still had to solve the symmetrisation problem; after 

much thought and discussion, John McEwan came up with the solution 

of double symmetrisation over the three surfaces S 4 shown in 

Figure 4, and of triple symmetrisation over points on the three 

edges where these surfaces met. The reason for this symmetrisation 

becomes clearer when one sees the four volume elements fitted 
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together to form the larger cube; each triangular surface is shared 

between two volume elements, while each edge is shared between three 

volume elements. We had to write down the sets of linear equations 

in concise algebraic notation, and foun~ that it was remarkably 

simple to do; further, I realised that the partition of numbers of 

equations between volumes, surfaces, and edges followed a very simple 

rule which could easily be generalised to systems with an arbitrary 

number N of variables. In this way it turned out to be relatively 

easy to generalise the scheme to power series in N variables. The 

geometrical structures of Figures 1 and 4 thus generalise to N 

dimensions. 

In Figure 4, if one looks at the points with one component of X 

zero (on the rear vertical plane, say), we see that they form exactly 

the configuration of Figure i, with the correct double symmetrisatiom 

These points correspond to the equations obtained when one variable 

is put zero, so that the three-variable (and likewise the N-variable) 

approximants satisfy the projection property. The system of 

approximants thus forms an infinite-dimensional space with a natural 

projection property. The fact that the whole space of approximants 

mimics the behaviour of the original many-variable series so well 

encourages our belief that the approximants will often represent 

functions of several variables well. This work on N-variable 

diagonal approximants was published 7 in 1974. During the same 

period, Gordon Makinson, Dick Hughes Jones and Peter Graves-Morris 

were studying the algebraic structure of the two-variable equations, 

defining off-diagonal generalisations, and writing programmes to 

carry out computations. They produced, over a short period of time, 

8 a series of three papers containing their results. The first paper, 

by Hughes Jones and Makinson, elucidated the algebraic structure of 

my two-variable equations; this structure turned out to be remarkably 
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simple and convenient. Apart from the complication due to the 

symmetrised equations, the matrix which had to be inverted was of 

the lower block diagonal form 

D(1) 
m 

a(1) D(1) 
m m 

. . . .  o . ° o . o o .  . . . .  • •  

R~I) _(1)  
u 1 

D(2) 
m 

R (2) D (2) 
m m 

• . . . .  , o . . . .  • .  . . . . .  . 

, (8) 

where D~l),...,Um_(1) and D~ 2),...,D~ 2) are just the square matrices 

which have to be inverted in order to calculate the first m Pad~ 

approximants of the single power series f(Zl,O ) and f(O,z2). Thus 

the inversion of a matrix of dimension (m2+2m) is essentially redu~d 

to the calculation of two sequences of diagonal Pad~ approximants up 

to order m. Further, it was now clear that the matrix in general 

had a unique inverse, and that existence and uniqueness theorems 

could be established. The structure of the equations was inter- 

preted in terms of "prongs"; the L-shaped set of points in Figure 1 

is a "prong", and is defined by the point (p,p) on the line of 

symmetry of the lattice region; it defines a set of equations which 

are considered as a block. The fact that the number of equations 

corresponding to points of a prong inside the square is equal to the 

number corresponding to points outside is directly related to the 

fact that the block matrices on the diagonal of the matrix (8) are 

square matrices, ensuring that the matrix (8) can generally be 

inverted• 
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9 
In the second paper , Graves-Morris, Hughes Jones and Makinson 

used the prong method to define symmetric off-diagonal approximants 

(S.O.D's); this method ensures that the linear equations are 

generally soluble, and uniquely defines approximants symmetric in 

two variables which have properties analogous to those of off- 

diagonal Pad~ approximants, including reciprocal covariance; they 

also satisfy the projection property. The first computations using 

diagonal approximants and S.O.D's, calculating the beta-function and 

approximating its singularities, were reported in this paper; the 

work provided welcome confirmation that the approximants did in fact 

approximate~ An ALGOL procedure IO was published along with this 

paper. Figure 5 shows the lattice configuration corresponding to 

the S.O.D. linear equations, and typical prongs. 

Ii 
The third paper , by Dick Hughes Jones, extended the prong 

method to series with N variables; for diagonal approximants, the 

natural extension of 2-variable approximants using this approach 

turned out to be exactly the approximants defined by John McEwan and 

I; this meant that these approximants satisfied all the properties 

(i)-(vi) and (viii)-(x), and also had good algebraic properties. 

The paper also extended S.O.D's to N-variable series, and defined 

general off-diagonal approximants (G.O.D's), in which the maximum 

powers of all N variables in both numerator and denominator were 

arbitrary; the G.O.D's were therefore the most general approximants 

possible. The G.O.D's again satisfy the fundamental properties 

similar to those of the diagonal approximants, excluding of course 

homographic covariance. The lattice point configurations for three- 

dimensional S.O.D's and for two- and three-dimensional G.O.D's are 

shown in Figures 6, 7 and 8. In Figure 6, the two types of prong 

needed to define the system of equations are exhibited, and a 

typical 2-dimensional prong for a G.O.D. is shown in Figure 7. 



43 

In the early summer of 1973, Peter Graves-Morris and I both 

began thinking about convergence theorems, and decided to collaborate 

in trying to generalise the theorem of de Montessus de Ballore. 

This involved simplifying and generalising Gragg's proof of 

de Montessus' theorem for simple poles, in order to provide a simple 

enough starting point. The work took nine months to complete, and 

we had to do a great deal of hard classical analysis and algebra of 

determinants; we each contributed several crucial ideas, and I do 

not think that either of us would have completed the work alone. 

We succeeded in establishing some limited generalisations of 

• 12 
de Montessus' theorem to two-variable approxlmants ; the variety 

and complexity of functions of two variables makes it necessary to 

impose conditions which are not needed for a single variable. There 

appears to be no reason why our theorems cannot be generalised 

straightforwardly to sequences of N-variable approximants. 

In this paper, we introduced arbitrary weights into the 

symmetrised equations, since this arbitrariness affected none of the 

properties of the whole scheme. The problem of weighting had been 

with us from the beginning, and in the autumn of 1974, while he was 

working at Brookhaven N.L., Peter Graves-Morris wrote telling us of 

a proposal to choose the weights in order to maximise the denomin~or 

determinant in solving the linear equations 13", it occurred to me 

that this choice might also ensure convariance of the equations 

under relative scale transformations. However, Dick Hughes Jones 

and I quickly discovered that covariance was ensured by exactly the 

14 
inverse choice of weights ; we therefore had solved the problem of 

providing full covariance of diagonal approximants under the group 

(4) with r=l,2,...,N, for any N. This choice, nevertheless, courts 

numerical disaster because it may help to make the equations almost 

degenerate. Peter Graves-Morris and David Roberts have compared 
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numerically 15 the various choices of weighting factors; there is not 

a great deal of difference, but PETCH (Peter's choice) appears to 

give rather more consistent results than SCINCH (scale invariant 

13 
choice). In their paper , Graves-Morris and Hughes Jones have 

analysed possible degeneracies of G.O.D. two-variable approximants, 

showing that new types of degeneracies arise, compared with Pad~ 

approximants. 

Two applications to problems in physics have been made. 

Peter Graves-Morris and his student Charles Samwell have applied 

two-variable approximants to the study of problems in potential 

theory 16", this work is being reported at Marseille later in the 

week. My own view is that these examples, plus one by John Gammel, 

are very encouraging. The other application arose out of a lecture 

I gave to the Nottingham University Student Mathematical Society; 

I was talking on Pad~ approximants, but could not resist mentioning 

N-variable approximants at the end. Dr. David Wood (of Nottingham) 

was present, and immediately proposed using these approximants on 

several double series arising in critical phenomena. The first 

results from Nottingham 17'18 indicate that the new approximants 

solve some problems not previously solved. Through David Roberts, 

we supplied programmes IO'19 for this work, and he has collaborated 

in the study of a number of numerical examples 20, which again give 

encouraging results. The scope for applying this technique to 

double (and, later, triple) power series is enormous, and at this 

conference we have heard of problems in fluid mechanics which give 

rise naturally to double series. Theoretical chemistry is another 

field in which series in several variables arise naturally. While 

no technique can be expected to solve all problems to which it can 

in theory be applied, it seems that we are just at the beginning of 

the investigation of the applicability of this N-variable approxi- 
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mation method to a wide variety of problems arising in many differe~ 

fields. 

There have been two other investigations of approximants of 

this general type, by Levin 21, and by Lutterodt and John 22'23 

These studies were framed more generally than those carried out in 

Canterbury, and were not directed at defining approximants satisfy- 

ing the very specific properties which I originally sought to 

satisfy. Two other approaches to defining many-variable approxi- 

mants have been studied : Alabiso and Butera have defined approxi- 

mants through the two-variable moment problem 24, and in an excellent 

doctoral thesis 25, O'Donohoe has defined N-variable generalisations 

of continued fractions, not only matching a power series but also 

solving the interpolation problem. Both of these approaches give 

approximants differing from those I have described; it may be that 

three topics which overlap considerably for one-variable series, 

namely Pad~ approximation, continued fractions and the moment 

problem, have generalisations for many variables which are 

essentially different. 

One factor which has been of great importance throughout this 

work has been the readiness of each member of our group in 

Canterbury to communicate and share his ideas; this was undoubtedly 

a major factor in the rapid development of the theory, and I would 

like to acknowledge the unselfish co-operation of all those 

connected with the work. I would also like to thank Sandra Bateman 

for her consistently excellent work in producing this and many other 

more complicated papers, often under serious pressure of time. 

I am grateful to Dick Hughes Jones for allowing me to copy or adapt 

a number of his very clear diagrams, and to my daughter Carol for 

drawing some of the diagrams. 
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Fig. 3 Volume regions : 3-variable 
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Abstract 

Some of the convergence theorems about rows of the Pad~ table 

of analytic functions are reviewed, especially Beardon's theorem and 

de Montessus' theorem. The progress on convergence theorems for the 

third row, the "poles out" theorem, and de Montessus' theorem for 

two variables are explained. Two conjectures about convergence of 

rows, one of which is a counterpart of the conjecture of Baker, 

Gammel and Wills for diagonal sequences, are boldly made. 
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Introduction 

The ideal introduction is Chapter II of "The Essentials of Pad~ 

Approximants" Eli. However, the pertinent facts may be selected and 

the tale is not too complicated. It starts by defining Pad~ 

Approximants, P.A's for short, by fL/M(z) = A(z)/B(z) where A(z) is 

a polynomial of degree at most L, B(z) is a polynomial of degree at 

most M, B(0)=I and the Maclaurin expansion of fL/M(Z) agrees with 

M+N 
that of f(z) up to and including the coefficients of z 

But before commencing on the theorems and their justifications, 

it is as well to reconsider some of the motives for using the Pad~ 

table. Given a formal power series, how does one reconstruct the 

function it represents? There is little else one can do except form 

the Pad~ table and inspect some suitable sequences. If the first 

row converges, which means that the sequence of EL/O] approximants 

converges, which is the same as saying that the Taylor series 

converges, then one is either in or on the circle of convergence of 

the given power series and there is no difficulty in principle. In 

practice, convergence may be too slow for the method to be of value. 

One of the methods of accelerating convergence is Aitken's 8 2 method, 

which turns out to be the same as using the second row of the Pad~ 

table, which is the sequence of EL/I] approximants. If this 

converges, again the problem is solved in principle. Likewise, 

convergence can be accelerated again by looking at the third row, 

fourth row et cetera. What have we gained? In practice, the answer 

is that convergence has been greatly accelerated, and going not too 

far down the third row gives a good answer if convergence of the 

first row is slow. What has been lost? You never get something for 

nothing, and the price of using any row except the first is that 

holomorphic functions are known to exist for which an infinite 

subsequence of approximants does not converge. The price is the loss 
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of the guarantee of convergence of the Taylor series of holomorphic 

functions. 

The natural suggestion prompted by the foregoing is the use of 

the diagonal sequence. Pad~ folklore is that you should normally use 

the diagonal sequence, and I entirely support this popular movement. 

Various reasons support the use of the sequence of diagonal 

approximants in cases where there is no information to suggest an 

alternative. I propose that the following reason is as strong as 

any other. One conjectures that the given power series is the 

expansion of a meromorphic function f(z). Thus (f(z)~ ~I is also a 

meromorphic function and the diagonal sequence of P.A's to f(z) is 

the only simple sequence which treats f(z)and (f(z)~ -I symmetrically. 

These remarks are based on the theorem that if g(z) = (f(z)~ -I then 

= (fL/L(Z)~ -I There is also considerable numerical gL/L (z) 

experience (by authors who use sufficient numerical accuracy to give 

credible results) to back the choice of diagonal approximants. 

(Other authors quote the theorem of Baker, Gammel and Wills E2~ as 

evidence to support the use of diagonal P.A's, but I think the 

argument is misleading because so many functions have essential 

singularities at infinit~. Of course, the fly in the ointment is 

Gammel's example of a holomorphic function for which an infinite 

subsequence of diagonal approximants diverge E31. The reason for 

mentioning the importance of diagonal approximants is to emphasise 

the importance of proving the conjecture of Baker, Gammel and Wills, 

and equally to state the importance of discovering the class of 

functions (which certainly includes the class of Stieltjes functions) 

for which the diagonal sequence of P.A's converges. The answers are 

not going to be easy to find, and, as a start, it is easier, but not 

easy, to consider row sequences. So one motive for studying row 

sequences is to learn something about how to treat diagonal sequences. 
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The first and second rows 

There is little to say about the first row except that it is 

the set of truncated Maclaurin series. 

The second row is much more interesting because it appears to 

be typical of what is expected, but not yet established, for the 

general row. Everything is contained in Beardon's theorems [4] 

which have the following implications:- 

Let f(z) have radius of convergence R. Let the poles of the 

[L/ll approximants be at z=pL. Then 

lim PL ~ R ~ ~ PL 

It follows, as this suggests, that an infinite subsequence of [L/I] 

approximants exists which converge uniformly to f(z) on IzI~p for 

any p<R. It follows, as the inequality suggests, that functions 

analytic in Izl<R may be found for which an infinite subsequence of 

[L/I] approximants do not converge at any point in Izl<R, or even on 

a point set which is dense in Izl<R. 

The proofs are quite simple and follow from the fact that PL is 

given by the ratio of successive terms of the Maclaurin series of 

f(z). The final remark about divergence on a dense point set follows 

from Perron's example [51. 

de Montessu~ theorem 

Let f(z) be meromorphic in Izl<R with precisely M poles in 

]zl<R , counting multiplicity. Then fL/M(Z) + f(z) as L+~ uniformly 

on Izl<p for any p<R, except on arbitrarily small open neighbourh~ds 

of the poles. 

This means that f(z) has M poles in Izl<R, where double poles 

count double, and pth order poles count p times. The important thing 

is that, given R, we must know M. Once the radius of meromorphy, R, 

and the number of poles enclosed, M, are known, de Montessus' 

theorem establishes as much convergence as one can possibly expect, 
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and is a very powerful theorem. The old proof [6] is now superseded 

by Saff's elegant proof [7]. From a constructive viewpoint, the 

work of Gragg [8] and simplified by Chisholm and Graves-Morris [9] 

has some advantages. These last three authors show that the M 

dimensional H~nkel determinants of the coefficients approach limits 

determined by the M poles of the given function nearest the origin 

and their residues. The advantage of Saff's proof is that the case 

of multiple poles need not be treated as a special case. 

The drawbacks of de Montessus' theorem and the need for other 

results are most simply seen by a few examples. Suppose f(z) is 

holomorphic. Then de Montessus' theorem only applies to the first 

row, which is the sequence of [L/O] approximants. Or alternatively, 

suppose that we know that f(z) has at least M poles. Does it follow 

that [L/M] approximants converge in some domain as L+~? The answer 

is no, not necessarily. Suppose the poles of f(z) are ordered 

according to their distance from the origin, and the M-I th, M th and 

M+I th poles are equidistant from the origin. Then there is no circle, 

centre z=O, which contains precisely M poles of the function and 

de Montessus theorem does not apply in this case. 

Existence of Approximants 

It is worth mentioning that the apparently harmless definition 

of P.A's stated in the introduction is, in fact, the modern or 

Baker definition [iO]. It has several important consequences. The 

The first is that if approximants cannot be found to satisfy the 

conditions, then they are declared not to exist. The best known 

example is the non-existence of a [i/i] approximant to l+z 2. The 

idea that interpolatory rational fractions do not exist in certain 

circumstances is well known, and one advantage of the Baker 

definition is that it does not obscure the problem by introducing 

deficiency indices or by cross-multiplying by zero or by any other 
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subterfuge. The statement that an infinite subsequence of 

approximants of any row of the Pad~ table exists is then a non- 

trivial theorem [3], and is true for any formal power series. 

Nothing follows about convergence of the extant approximants to any 

limit function. 

The Third Row 

The principal new result I wish to mention is a convergence 

theorem for the third row of the Pad~ table. Baker and I [ii] have 

established that at least an infinite subsequence of [L/2] 

approximants of a holomorphic function converge to the function 

uniformly in any compact region of the complex plane. 

Proof The proof is complicated, but it is quite easy to outline 

the principal ideas. Suppose that the given holomorphic function is 

f(z) = [ c. z i 
i= 0 i 

Set up an array of vectors v. = , and -i (ci,ci+l) in the space C 2 

IZi[ vi {Icil2+ICi+l [~}i = = It is quite easy to show that, for any 

positive X no matter how large, there exists an infinite subsequence 

of ratios R i = vi/vi+ 1 which are greater than X. For otherwise we 

can show that f(z) has radius of convergence equal to X, which is 

untrue by hypothesis. 

Second, we may examine the denominators of the [L/Z] Pad~ 

approximants, which are 

QL(Z) = i + ~L z + 8LZ2 

Provided that an infinite subsequence of values of L may be found so 

that [~el and IBel are sufficiently small, then Qe(z) has no zeroes 

in the compact region where the approximants are expected to 

converge. 
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Since 

c L CL+21 c L CL+ 1 

and 

CL+ 2 c L CL+ 1 

we s ee  t h e  c o n d i t i o n  f o r  ~L and ~L to  be s m a l l  i s  t h a t  1%-1 % I 
I c L CL+ 1 I 

i s  n o t  a n o m a l o u s l y  s m a l l .  T h i s  would  o n l y  be t r u e  i f  gL-1 and gL 

were a l m o s t  p a r a l l e l ,  and i n  t h a t  c a s e ,  t h e  [ L - l / 2 ]  a p p r o x i m a n t  
c 

t u r n s  ou t  t o  be a h o p e f u l  c a n d i d a t e .  The p r o o f  now becomes  more 

c o m p l i c a t e d ,  b u t  r u n s  a l o n g  t h e  l i n e s  t h a t  i f  R L i s  s u f f i c i e n t l y  

l a r g e ,  t h e  [ L / 2 ]  a p p r o x i m a n t  i s  s u p e r f i c i a l l y  a good a p p r o x i m a t i o n  

to  f ( z ) .  The o n l y  p r o b l e m  o c c u r s  when t h e  d e n o m i n a t o r  d e t e r m i n a n t  

i s  s m a l l ,  i n  which  ca se  t h e  [ L - l / 2 ]  a p p r o x i m a n t  i s  s u p e r f i c i a l l y  a 

good a p p r o x i m a n t .  We p r o c e e d  by i n d u c t i o n .  E i t h e r  a good 

a p p r o x i m a n t  i s  f o u n d ,  o r  e l s e  a whole  s e q u e n c e  o f  d e t e r m i n a n t s  a r e  

s m a l l ,  wh ich  means t h a t  t he  f u n c t i o n  c l o s e l y  a p p r o x i m a t e s  a g e o m e t r i c  

function, which is not holomorphic. Thus there must exist an 

infinite subsequence of convergent [L/23 approximants. 

This is only the outline of the proof. The actual proof removes 

the condition in Baker's earlier result [3] that f(z) had to be a 

holomorphic function of order less than one. However, our theorem 

does not go as far as we would like. The best theorem is expected 

to require only that f(z) have a circle of convergence, and to 

prove that an infinite subsequence of [L/23 approximants converge to 

f(z) within that circle. That remains to be established. 

A Conjecture about Convergence of Rows 

The foregoing remarks led Baker and me to make the following 

c o n j e c t u r e  [ i13: 
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"At least an infinite subsequence of EL/M] approximants of a 

function converges to the function within the largest circle, centred 

on the origin which contains not more than M poles of the given 

function and within which the function is meromorphic". 

We can establish this result in various special cases which give 

credibility to the conjecture. For a start, if the circle contains 

precisely M poles, the theorem follows from de Montessus' theorem. 

If the given function is holomorphic, the result of the previous 

theorem proves the conjecture for the third row. If the function is 

analytic within the circle, then Beardon's theorem establishes our 

conjecture for the second row. Our conjecture is trivially true for 

the first row. There remains the question about fourth and lower 

rows and also the question of functions meromorphic in the circle 

and with precisely one pole in the circle. The latter possibility 

we deal wilth next. 

A "~ole out" theorem 

Suppose the function c(z) is given, which is meromorphic in a 

circle PR of radius R, centred on the origin, and has m poles, 

counting multiplicity within F R. Let d(z) be the monic polynomial 

of degree m for which both g(z) = ~(z) c(z) and h(z) = ~(z) g(z) are 

analytic in PR" Suppose that a sequence S = {LI,L2,...} is given 

such that ELi/l] h converges to h(z) in F R as i+~. Then [L~-m/m+l] 

l ! 
converges to c(z) for some infinite subsequence S' = {LI,L2,...}c S 

on any compact set ~ satisfying 

c {z: o(z)~O and IzI<R} . 

What this theorem means is that we have established a link 

between convergence of [L-m/m+l] approximants to the meromorphic 

function c(z) and the [L/I] approximants to the analytic function 

h(z) = {q(z)}2c(z). It is a little surprising that the link is with 
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h(z) rather than g(z) = o(z) c(z). At any rate, with m=l, this 

theorem establishes our previous conjecture about rows as far as the 

third row for functions meromorphic in a region with at least one 

pole. 

For the proof of the previous theorem, we refer to our preprint 

[ii]. In outline, we note that, for m=l, 

Q[L-I/2] (z) = 
z 2 z 1 I 
CL_ 2 CL_ 1 c L 

CL_ 1 c L CL+ 1 

Let o(z) = z + ~i 
oo 

g(z) = ~ gjz j 
j=o 

h ( z )  = ~ h . z  j . 
j--o J 

Then gj  = c j _  1 + ~ lCj  

hj  = g j - 1  + ~ l g j  

and 
Q [ L - 1 / 2 ]  (z)  = z a ( z )  q ( z )  1 

l hL hL+l gL+l 

gL gL+l CL+I 

where 

= CL+ 1 d e t  I I zc~(z )  

It h L 

I fo11 e1211 
h~,÷lt - te2~ e2~jl 

r i [] -I ell el2 -- 1 CL+l (g L gL+l ) 

le21 e22J gL+l 



Then it turns out that Q[L-I/2](z) is dominated by the term 

-CL+ 1 h L g(z), if L is chosen so that lhL/hL+iI is suitably large. 

This is not surprising, since CL+ I is dominated by the contribution 

of the pole of c(z) and h L and gL are expansion coefficients of 

holomorphic functions. 

Once again, the foregoing remarks lead to a conjecture, which 

we entitle the role of the poles conjecture. 

"Suppose that a function c(z) is given, which is meromorphic in 

a circle F R of radius R, centre the origin, and has m poles, counting 

multiplicity, within r R. Let ~(z) be the monic polynomial of degree 

m for which g(z) = ~(z) c(z) and h(z) = ~(z) g(z) are analytic in F R- 

Suppose that an infinite sequence S = {LI,L2,...} is given such that 

[Li/~3 h converges to h(z) in P R. Then we conjecture that 

[L~-I/w+I] c converges to c(z) for some infinite subsequence 

S' = {L~,L~,...} c S on any compact set ~ satisfying 

c {z: ~(z)~O, [zI<R} 

Baker and I prove in our preprint that this result holds also 

in the case of ~=2 and h(z)being a holomorphic function of order 

less than i. 

de Montessus' Theorem in TWO Variables 

The final topic I wish to mention is the analogue, due to 

Chisholm and myself [9], of de Montessus' theorem in convergence of 

Canterbury Approximants. We define a C.A, in this context by 

~I ~2 a..xiyj 
i=o j=,o i] = 

fmlm2/nln2 (x'y) = ~I ~2 b..xiyj 

i=o j=o iJ 
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In this expression, a(x,y) is a polynomial of maximum degree n I in x 

and maximum degree n 2 in y and the set (aij} occupies a rectangular 

block of dimensions (ml+l)×(m2+l) in the (i,j) lattice space. 

Similarly, the denominator is a polynomial and {bij} occupies a 

(nl+l)×[n2+l) block of lattice space. We define boo=l, so that there 

are (ml+l)[m2+l ) + (nl+l)[n2+l ) 1 coefficients to be determined. 

Suppose that we seekapproximants to 

~ xiy j f(x,y) = ~ c. 
i=o j --o iJ 

Then we cross multiply to give 

?{ .... I T T 
,i--o j=o i o j=o i=o j=o 

= ~ ~ d..xiy j 
i=o j=o iJ 

We require as many of the dij to be zero as possible, and look at the 

dij lattice space to see what the equations should be. First we need 

the rectangular block (O~i~ml) @ (O~jzm2) which determines the {aij} , 

once the bij are known. Second, we need (nl+l)×(n2+l) - i further 

equations. Without going into details, this second block is divided 

into a triangular region and a trapezoidal region, and these are 

appended to the first block to give the correct number of self- 

consistent equations for {aij} and {bij}. The details are explained 

in [9,12,133. 

The approximants so defined to have a variety of useful 

properties, such as reduction to Pad6 Approximants and factorisation, 

as is explained in Prof. Chisholm's contribution to this book. In 

seeking to generalise a theorem about the convergence of rows of the 

Pad~ table to meromorphic functions, we seek a generalisation of the 
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notion of rows and of meromorphic functions. A meromorphic function 

of several variables is a section of a sheaf of germs [14]. Such 

precision is necessary because complex functions of two or more 

variables are much more complicated than in the one variable case, 

and great caution is required. With an eye on the possible, we 

state a theorem about functions of the form f(x,y) = A(x,y)/B(x,y), 

where A(x,y) is analytic in a domain IxlgRl, lyI~R2 to be specified 

and B(x,y) is a polynomial: 

B(x,y) = ~I ~2 B..xlyJ with B = I. 
i=o j =o 1J O0 

To ensure that it is genuinely a polynomial of degree nlxn2, we 

require that B(x,O) has n I zeros, counting multiplicity, at p~l) 

(~=l,2,...,nl) which are ordered so that O<Ip~l) I ~ Ip~ I) ~ ... 

g Ip~l) l-- < R 1 and similarly that B(O,y) has n 2 zeros, counting 
1 

multiplicity, at p~2) (v=l,2,...,n2) which are ordered so that 

O < Ip~2) Ig Ip~2) l ~ ... g Ip(2) I < R 2. We further require for~asons 
n 2 ' 

which are by no means immediately obvious, that f(x,O) have no poles 

equidistant from the origin except multipoles, and a similar 

requirement for f(O,y). In equations, this means that if 

IP~I = IP~i) I, then n (i) = p~i) for ~=2,3, and i=1,2. ~V-I "'''ni 

We have two reasonably strong theorems, which are:- 

Theorem 1 

Let B(x,y) = gl(x) g2(y), so that B(x,y) factorises. Le~ RI,R 2 

be any numbers for which Rl>Ip(1) l and R2>Ip(2) l. Then the C.A's 
n I n 2 

[ml,m2/nl,n2] converge uniformly to f(x,y) as min(ml,m2)÷~ , on any 

compact subset of {x,y: Ix]~Rl, ]y]gR2, B(x,y)#O}. 
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Theorem 2 

Let f(x,y) = f(y,x), which means that f(x,y) is symmetric. 

Then we may set R=RI=R2, m=ml=m 2' n=nl=n2' Pi-Pi- (1)__pi(2) 

Let 
n 

R > Ipnl ~ Ipi/Pl I 
i=l 

which means that A(x,y) has to be analytic in a larger domain than 

(Ixl<Ipnl) @ (lyI<Ipn[). Then the C.A's [m,m/n,n] converge uniformly 

to f(x,y) on any compact subset o5 {x,y: Ixl~R, lyl~R, B(x,y)~O}. 

The proofs of these theorems are too long even to outline. 

There are also other theorems for similar cases. But the spirit is 

plain. We have analogues of de Montessus' theorem, but with 

several constraints on the nature and location of the singularities 

allowed. 

Postscript 

Theorems about rows of the Pad~ table have been discussed. I 

have preferred to term the set of [L/M] approximants with M fixed and 

L=O,I,2,... a row because the Taylor expansion is usually expressed 

along the line of writing; this reason is not too strong, and it may 

be that "Columns of the Pad~ Table" would have been a better title. 

Only time will tell which nomenclature is the more popular. 

I suspect that the Baker Graves-Morris conjecture about 

convergence of subsequences of rows (or did I mean columns?) will be 

proved within a few years. Maybe the role of the poles conjecture 

(also called the "poles out" conjecture) will take longer. The 

discovery of convergence theorems for Canterbury Approximants is 

clearly incredibly difficult, being both a challenge of ingenuity 

and endurance. 
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THE USE OF PADE APPROXIMATION IN NUMERICAL INTEGRATION (*) 

L. Wuytack 

Summary. 
b 

The probiem of the numerical evaluation of the integral I =f f[t)dt 
a 

wiil be considered. A nonlinear technique, based on the use of Pad@ 

approximation, will be given and discussed. 

The value of the integral satisfies I =y(b) , where y(x) is the 

solution of the initiai value problem y' =f[x) with y(a) =o. This 

solution is approximated using Pad@ approximation. Consequently a 

one-step method is obtained to approximate the vaIue of I. Certain 

properties of this method are given, e.g. its order of convergence. 

1. Introduction 

Most classical formulas for approximate integration of a definite 
b 

integral I =f f[x).dx are linear (see [3]), which means that I is 
a 

approximated by a linear combination of the values of the integrand 

f or 

I~Wl.f[x 1] + w2.f[x 2] + ... + Wn.f[Xn] ' 

The points xl,x 2 .... ,x n usually belong to [a,~ and the numbers 

w1,w 2 ..... w n are called weights. In some cases the values of the 

derivatives of f are also taken into consideration and then linear 

combinations of the values of f and its derivatives at certain 

points are formed to approximate the value I of the integral. 

(*) Work supported in part by the FKFO under grant number 2.0021.75 
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Using such techniques, a sequence 11,12 .... of approximate values can 

be constructed having I as limit. The convergence of the sequence 

I K can be accelerated by several techniques. Well-Known is Romberg 

quadrature where the sequence {I K} is constructed by using the 

trapezoidal rule and the convergence of this sequence is then 

accelerated by using a linear extrapolation technique. Also nonlinear 

acceleration techniques can be used, e.g. rational extrapolation and 

the e-algorithm. A comparison of these different techniques for 

accelerating the convergence of { I K} can be found in [~ and [4 • 

In many cases the linear methods for approximating I give good 

results. There are however situations, e.g. if f has singularities, 

for which linear methods are unsatisfactory. Sometimes it is then 

possible to modify a classical method in order to adopt it to the 

special situation on hand (see e.g. [4 ,[7] and [4 ). Another Kind 

of approach, which will be followed in this paper, is to use a non- 

linear technique. This means that I will be approximated by a non- 

linear combination of the values of f and its derivatives at certain 

points. 

In this paper some methods will he described which are based on the 

use of Pad@ approximation. The first method is based on the 

approximation of the integrand f by a Pad@ approximation and then 
b 

performing the integration f r(xJdx. This approach is called 
a 

"direct" and considered in section 2. The second method is given 

in section Z and is based on an "indirect" approach to the problem 

under consideration, by reformulatin Z it as an initial value problem. 

The resulting differential equation is then solved by using Pad@ 
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approximation. In order to apply this technique, the derivatives of 

f must be Known, which might be sometimes less interesting in practice. 

Therefore a modification of this method is given in section 5, having 

the same order of convergence but without the need to compute 

derivatives. In section 4 some convergence properties are proved. 

2. A direct method 

Let R m be the class of (ordinary) rational functions r =P where p 
n q 

resp. q is a polynomial of degree at most m resp. n and such that 

P is irreducible. Let r be the Pad6 approximant of order (m,n) for 

q b 
f in R m, then I =f r(x).dx can be considered as an approximate 

n r a 

value for I. In general it is however not easy to find the value of 

I , if it exists. If the poles of r are Known then the partial 
r 

fraction decomposition of r can be formed. This sum can then be 

integrated term by term in order to get Z . This process is 
r 

numerically less interesting and several difficulties can be 

encountered. An application of this technique to the computation 

of Fourier Transforms can be found in [I] . 

3. An indirect method 

x 
Put y[x] =f f[t].dt then I =y[b]. If f is Riemann integrable on 

a 

[a,~ then y is continuous on [a,~ . Furthermore if f is continuous 

at a point x of [a,~, then y is differentiable at x and y'[x] =f[x]. 

The computation of I can now be done by computing the value in b of 

the solution y of the followin@ initial value problem : 

y ' [ x )  = f ( x )  , y ( a )  =o  . (1 )  
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In order to find a solution of (1] numerically a discretizatlon 

technique can be used. Let x, =a +i.h for i=0,1 .... ;M with M a 
l 

b-a 
positive integer and h =T " Let Yo =y[a) and an approximate 

value of y[x i) for i>o, be denoted by Yi" We now describe a method 

f o r  computing Yi '  f o r  i = 1 , 2  .. . . .  M. 

Assume that Yi is Known and that the values of the derivatives f[k)[x i] 

exist for k>o. Then,consider the series s. defined as follows 
l 

h2 h3 f " [ x_ )  
s i [h ]  =Yi  + h ' f [ x i )  +~T ! ' f ' ( x i )  +~ ! '  i + "" [2) 

Pi 
Let r. =--be the Pad@ apprcximant of s, of order [m,n]. 

z qi z 

that r i is an element of R m and that 
n 

This implies 

si[h).qi[h) -pi[h] =OChm+n+ki+lj [3] 

for some integer value of K i, which is as high as possible. 

If qi[xi+1) #o then the value of Yi+1 is defined as follows 

Yi+l =ri[xi+l] " (4) 

Since Yo is Known and since r i exists for every i, this technique 

allows us to compute yl,y 2, .... YM' The value YM can be considered 

as an approximate value for y[b) or I. It will be seen in the next 

section that lim YM =I if certain conditions ere satisfied. 
h ~ o 
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A variant of the above technique has been used by P.J.S. Watson 

in [9], for the case where h=b-a or M = I. In the next exampie 

we illustrate what Kind of formulas we get if [4) is used to 

compute approximate vaiues for I. 

Example Let m =n = 1 then the Pad@ approximant r i of order (1,1) 

of (2) is the rational function associated with the irreducible 

form of ~ where 
q 

f ' ( x . )  
[f2[xi) p=yi.f[xi) ÷ h. - Y i . T  ] and 

~ ' [ x  i )  
q =f[x i ] -h.-----~----. 

The formula [4) gives 

2.f2(x.) 

h . 2 . f ( x i  ) 1 f o r  i = 0 , 1  . . . . .  M-1 (5) Yi+q = Yi + - h.f'(x i) 

It is clear that YM is a nonlinear combination of values of f 

and its first derivative at the points x,. z 

As a consequence of [5) we also get the following formula for 

approximate integration between x i and xi+ 1 : 

Xi+l 2.f2(x. ) 
1 

fxl f[t).dt ~ h.2.f(xl ) _h.f,(xi ) 
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4. Convergence properties 

In this section some convergence properties of the method described 

in section 3 will be given. 

Consider any one-step method of the following form 

Yi+ l  = y i  + h ' g ( x i ' h )  f o r  i = 0 , 1  . . . . .  M-1 (6) 

for computing a solution of (I) numerically. Assume that g(x,h) is 

defined and continuous for every (x,h) in [a,b] x [o,h o] , where h ° 

is some positive real number. Under this condition the following 

result can be proved. 

Theorem 1. Let  Yi be de f ined  by (6),  then lim Yi =y(x) f o r  every 
h~ o 
x = x i  

x in  [ a , ~  i f  and on ly  i f  g [ x , o )  = f ( x ) .  

This property is a special case of a theorem about the convergence 

o% one-step methods for the numerical solution of ordinary differential 

equations Csee [4 ,p.?1). 

Due to the definition of r. in section 3, it is clear that [4) can 
l 

be written in the form [6) with g(x,h) = [ri(x) -yi ] /h or 

g{x,h) =f{x)+h. f'(x] +3~ ~ . f"(x) ..... This implies that 

g[x,o) =fix), consequently theorem I can be applied and ~yM =y{b)" 

About the order of convergence we can prove the following result, for 

the case where K. =o in (3) for i =0,1,2 ..... M-1. This case is called 
l 

the case of normal Pad~ approximants. 



75 

Theorem 2. Let r. be the normal Pad@ approximant of s. of order 
l & 

[m,n) and Y i+ l  be de f i ned  by [4 ) ,  then 

Y (X i+ l )  - Y i + l  ~O(hm+n÷1) as h ~ o ,  f o r  i = 0 , 1 , 2  . . . . .  M-1. 

A proof of this theorem is given in [10]. 

5. One-step methods w i t hou t  usin~ d e r i v a t i v e s  

Consider any one-step method of the form (6) for computing a solution 

of (I). In order to find the value of g[xi,h) it might be possible 

that derivatives of f must be computed. This is e.g. the case if (6) 

is derived by using the method in section 3. with m+n>l. The need to 

compute derivatives of the integrend can be compllcated and numerically 

less interesting. Therefore one could try to replace g(xl,h) in (6) by 

another expression, without derivatives, hoping to Keep a method with 

the same order of convergence. This technique has successfully been 

applied in some cases. 

If e.g. the derivative in (5) is replaced by its forward difference 

quotient, we get 

2 . f 2 ( x . )  
1 

Y i+ l  = Y i  + h • 3 . f ( x i  ) _ f ( X i + l  3 (7) 

I t  can be proved (see [10]) t h a t  t h i s  one-s tep  method has the same 

o rde r  o f  convergence as the method de f i ned  by us ing (5 ) .  The fo rmu la  

(7) can a lso  be cons idered as a n o n l i n e a r  method f o r  approx imate  

integration of f between x i end xi+ 1 , namely as 

X i÷ l  2 . f 2 ( X l )  
I f ( t ) . d t  ~ h . 3 . f ( x i  ) _ f ( x i + l  ) x i  
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In [10] some numerical examples are given, illustrating the usefulness 

of the nonlinear techniques derived in this paper. For "smooth" 

integrands the classical linear methods give in general better results 

than the nonlinear techniques. If the integrand has a pole near the 

interval of integration than the nonlinear techniques can give better 

results. Due to possible singularities in formulas of type C5) and 

(7), care must be taken in applying these formulas. Difficulties can 

sometimes be avoided by a careful choice of the stepsize h. 

Other nonlinear techniques for numerical integration are considered 

in [10 I. 
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DETERMINATION OF SHOCK WAVES 

BY CONVERGENCE ACCELERATION 

by 

Pr. Max BAUSSET - TOULON (France) 

-MAY 1 9 7 5 -  

The difficulties of the determination of stationary detached shocks 

arise from the global character of the problem to be solved as it is impossible 

to determine shock waves in the vicinity of a point. On the contrary for atta- 

ched shocks determination is possible step by step from the vertex of the body. 

These difficulties can be avoided by considering shock problems in a 

non-s~at~anary flow. If a body situated in a motionless fluid is set into motion 

so that the field of initial velocities is not null, this motion immediately 

causes a shock wave the determination of which in the vicinity of the initial 

time is a local problem. 

The evolution of the shocks corresponding to this motion in the vicinity 

of the starting point of the body is presented here. On analytical representation 

of the stationary detached shocks waves related to an analytical convex body can 

be obtained by a process of convergence accelaration, then by passing on to the 

limit when the permanent motion is reached. The data will be supposed to be such 

that operations can be considered as possible within the fields where it is being 

operated. 

- E~E~_~_~_~e_!~_~_~e~i~!~e_S!~i~ : 

The space is related to orthonormated fixed axes. 

The equation of the body is : 

[Y 

(1) x = f(yz) + ~(t) o I I 

body 

.%~ s h o c k  

[ . i  o''x 
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in which f is supposed to be uniform 

and the body occupies the region : x ~ f (y z) + ~ (t). 

The initial data are such that : 

(2) $(O) = O ~' (0) > 0 

This body is plunged into a non viscous compressible, non heat-conducting and 

supposedly perfect fluid. This motionless is defined by quantities p, p and 

representing respectively the pressure, the density and ratio of specific heats. 

The latter will be supposed to be constant throughout the motion. The characte- 

ristic quantities of this fluid (velocity, pressure and density) will be desi- 

gnated as V, p and p at the point of the spatio-temporal coordinates x, y, z, 

and t. 

The fluid and the body are motionless before t = O. Since at the initial 

time ~' (0) > 0 the motion of the body immediately causes a schock wave which 

propagates itself through the fluid. Its equation will be : 

(3) x = F (y z t ) 

For reasons of calculations symmetry which will appear below, let us 

write : 

(4) ~ (x y z t) ~ f (y z) + $(t) - x 

(x y z t) = F (y z t) - x 

so that when considering covector r = ] x, y, z ] the vectors normal at each 

instant to any point of the body and the shock are defined by : 

(5) N, = ~r * = N~ = ~r ~ = [-1, Fy, F'zl 
f'z 

In these conditions, the normal number of Mach M at time t at any point 

of the shock wave and the upstream number of Mach at infinite 32~ are defined 

by : 
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6 t = _ _ ~'(0) 
(6) M (~) = l 

- 

C(~r~ x ~r~) 2 

2 
c designating the speed of sound so that c p = yp at any point x, y, z, t. 

2 
Let us write (y + I) ~ = y - 1 and relate pressure and density to their va- 

lours at infinite introducing without dimensions : 

P (x y z t) = P R (x y z t) = 

In these conditions, the continuous motions of the considered fluid are 

defined by the classic equations of dynamics, mass and energy conservations which 

will be written under the form : 

2 
dr+ c -2 ! -~ 2" R. ~rP=O 
t I +~ 

(7) dtR - R.. T r (~r v) = O 

(I -2) R. dtP + (I + 2) p. dt R = O 

d t desigmating the corpuscular derivative and Tr the trace of matrix ~r V. 

The solution of shock problems is a result of the study of this system 

and the boundary of limits on the body and on the shock wave. 

In the absence of viscosity, the body is necessarily a stream surface, 

which leads to the equations : 

(8) 

(x y z t) = 0 

6r~ x V~ = ~t ~ 

in which V~ is the value of V on the body ~ = O. 

The classic conditions of shock phenomena mean that the quantities of 

motion, mass and energy are preserved while crossing the surface of the wave. 

Theae usual conditions can be expressed by the equations : 



84 

(9) 

V~ 

~ (xy z t) =0 

6t# -- 2 

~r ~ x ~r ~ 6t~ 
~r ~ 

P +2 ~2 ~r ~ ~2~r~-I 2 = -- -- ~/ 

' c I 7t° 

R~ = 21( _ 2,) + 

2 
(6 t *) 

in which V~ ) P# and R~ are the values of V, P and R on shock ~ = 0. 

At any point of the spatio~temporal region included between the body and 

the shock and for t ~ 0 equations (7) are identities in x, y, z and t. Added 

to equations (8) and (9), they permit the calculation of the partial n-order 

derivatives of quantities V, P, R and ~ at time t = 0. 

In effect, if one place oneself at the initial time when the fluid is 

motionless everythere except on the body which is set into motion, the position 

of the shock wave coincides with the position of the body. Thus one has for 

t = 0 the relations : 

(lo) ~ (x y z o) = ~ (xy z o) F(y z 0) = f (y z) 

which will be designated ~ = ~o" 
O 

They entail the following equations : 

V~ = V R~ = R 
o $o o $o 

(11) 

P$ = P ~ ~ = ~ ~o 
o ~o r o r 
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From the given equations (8) and (9) considered at time t = O one deduces the 

following relations : 

(12) 

6r~ ° x V~o = (6t~)t = O = ~'(O) 

6r~ ° x V~ = - (| - 2) l~--]--, t - 0 c (6r¢ ° x 6r#o) 

o 0r~ ° x ~Jo (6t~)t=O 

If one notices that -.(6t$)t_O = F' (y z O) one deduces by elimination of V the 
t 

initial value of the shock velocity at any point : 

(13) F' (y z O) ~'(O) + (~ (O) )2 + -- 
t 2(1_ 2 ) (1_~2) 6r~ ° x 6r~ ° 

- Second order derivatives : 
. . . . . . . . . . . . . . . . . . . . . . . .  

The total number of the partial n-order derivatives of a function 

A(x y z t) being C n n+3' one will be brought to consider the table : 

Jl 

(14) 6 n A ( x y z t ) II 
6nA ~n A 6nA 

n = ; ; r II 6xn 6Y n 6zn 

which will he a line or a matrix 3 x 3 according as A has a scalary or vectorial 

value. 

Relations (|l) then permit to calculate the spatial derivatives of 

(x y z t) for t = 0 in the form : 

n In n n 1 (15) ~r n (6r~ o) = -- (6r~o) ; ~ (6r# o) ; ~--~ (6r~ o) ~x n y 

from which the initial values of all the spatial partial derivatives of the 

function representing the shock wave : 

6 p+q F (y z O) dP+q f (~ z) 
(16) = 

6y p 6z q 6y p ~z q 

can be deduced. 

But concerning the temporal or spatio temporal derivatives of F it is necessary 
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to use the derivatives of the boundary of limits on the body and the shock. 

If one designates by ~ one differential which according to the case can 

be ~r' ~t' or dr, one deduces from equations (8) and (9) the following linear 

equations in relation to ~(~t~), ~(~t~) and ~(~r~) : 

+(x y z t) = 0 

(17) ~r ~ x 6V# = 6(~t ~) - 6(~r~) x v~ 

(18) 

(x y z t) = 0 

V~ = ~. ~r ~ x ~(~t ¢) + ~. 6r ¢ x ~r ¢ " ~(~r ¢) + Y " ~(~r ~) 

P~ = el. ~(6t ~) + 81 • ~(~r ~) 

R~ = e2" 6(6t~) + 82" ~(~r ~) 

in which to following quantities which are dependent only on the first order 

derivatives of ~ that are known at the initial time are : 

~2 ~r ¢ x 6r¢ + (6t~)2 6 ¢ 
= - (I - 2), 8 = 2(I- 2), t 

~ # x ~r ¢ "(6t#)2 ~r ¢ x 6r ~ 

(19) 

y = (I- 2) .... 
.(6t~)2 ~1 = -- 2 (6 r ~¢)2 6r~ x ~r ~ c ~ x 6 

8L = - 2(|+ 2) (dt~) 2 2 6r ~ x dr~ 

--2 r (~t~)4 c (~r ~ x ~r ~ )2 . 6 ~ ~2 = -2 ~2(I- ~ ) 

Y2 = 2c2" (| - 2) r 
(6t0) 2 
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According to the choice of differential 6, equations (|8) include the scaleries, 

lines and matrices : 

t !  

~t(~t ~) = #t 2 ~t(~r ¢) = J ¢" #" ¢" 1 tx ty tz 

(20) 

~r<6r ~) = 

,, ¢,, ¢,, 
Cx 2 xy xz 

¢" yx #'y2 # 'yz 

zx zy Cz 2 

~r(~t¢) = ~t(~r¢) 

which contain all the partial second order derivatives of function ¢. As to the 

first members, they contain the derivatives of V, P and R on the body or the 

shock, i.e. the quantities ; 

~v~ ~v~ 
dt(V~) =~ ~'t + ~t 

for the scalery derivative and the tables : 

I ~v~ ~v~ 
6rCV ~) = --~ ~ ; 

8x 87 6z 

for the vectorial derivative and the similar quantities for P and R and for 

function ~. 

Considering the equations (7) of the motion valid on the body ~ = 0 

with the preceding differential relations, one has eleven sixteen indeterminate 

equations. Namely ~V, ~P, ~R, on the shock or on the body as well as ~(~t ¢) 

and ~(~r¢). Consequently the'process used does not permit, as in the case of 

first derivatives, to calculate all the second order derivatives of V, P, R 

and F placing oneself at any time. 

(21) 

If one places oneself at time t = 0 the preceding relations entail : 

~V~o ~V¢o 
dt(V~o) = ~x $'(0) + --~t 

~V~ 6V¢ 

dt(V ~ ) o F~(O) + o 
o ~x ~t 
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for corpuscular derivatives as well as equations : 

go o 
_ ,, ; ; = - 

6x 6y 6z 6x 

(22) 6V0o 6V~o 

~t ~t 

O 

~y 

and the following value : 

(23) 6r(~r~o) = 

0 0 0 

0 f,,2 f,, 
y yz 

O f" f,,2 
zy Z 

= ~ (~r f) r 

One sees then that at that time the ensemble of second order partial derivatives 

is determined. 

In particular, one obtains : 

i .... I ~t(~t~o ) = Ft2(Y z O) ~rt(~o) = 0 ) Fty(Y z 0)~ Ftz(y z O) 

If one introduces the vector normal to the body for t = 0 : 

N~o= 6r f and the normal initial number of Mach defined from (6) by : 

i 
(24) M (x y z O) = iF~(.~rf, x L ~-fl- 2 

the results are as follows : 

i v  t !  (25) O; Fty(Y z O) ) Ftz(y z O) 2 M c <6rf x 6-~-} 2 0 ; g 
M 2 + | " go 6y 

6N~ 

go 6z 

for all initial spatio-temporal derivatives. 

The initial value of shock acceleration is expressed as follows : 

,, M 2 A 6 A 8 
(26) Ft2 (y z O) (M2-1) . ~"(0) - c -2 ~., (f) + ~2 .~.~2(f) 

(l- ~2)C 4 ~4 " I ~66 

in which A and C are n-degree polynomial expressions and ~ l(f) and ~2(f) 
n n 

quantities related to the geometry of the body : 
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F 7 
(~2 M 2 + l - ~2). (M2_l) I( l + ~2) M 2 _ U21 A 6 

(27) 
A8 = (p4_ p2) M 8 + (_2~4 + 3~2 + l )  M 6 + (3~4 + 2~2 - I )  M 4 + 

+( -2~  4 + ~2+1)M2 - ( 1 -  ~2)2 

C~ = (3 p2 + l) M 4 - (2~ 2 - 3) M 2 - ~2 

c 6 ° + 1) [ ( 3  + 1) - - 3 )  

~ l (f) = 2 6r f x ~r(~r f) x 8rf. ~r f x ~r--~ - I  - T r  <~r(~rf)> 

(28) 

"~2 (f) = ~r f x 6r(6rf) x 6rf. <0rf x ~r--~-| 

If one places oneself in the particular case of plane or axisymmetrical flows 

one finds again in (13) and (26) formulae established by CABANNES. 

-_6~£~_~!2~_2~_~!~!~ : 

The process used for the calculation of initial second order deriva- 

tives can be applied to superior order derivatives. 

The total number of the n-order derivatives of wave function F(y z t) 
n 

is Cn+ 2. Now if one differentiates identities (17) and (18) in yaz, and t (n-l) 

times and then if one places oneself at time t = O one obtai~e~ 6 Cn+in-I identities 

in relation to y and z. 

Similarly if one derives (n-2) times the equations of the motion 

which are identities in relation to x, y, z and t one obtains 5 C n-2 n+l relations. 

Placing oneself again at time t = 0 and on the shock or the body one 

finally obtains : 

(29) f (n) 6 n-I + 5 n-2 
= Cn+ I Cn+ I 

equations. These are linear in relation to the initial partial derivatives of V 
n-I 

p and @ numbering 5 Cn+ 2 and to the initial values of the (n-l) order deriva- 

tives of F(y z t) numbering Cn+l°n-; Indeed, the coefficients of these equations 

are dependent only on derivatives the order of which is inferior to (n-l). 

Consequently, giving to n the integer values successive from n = 2 

one can calculate all the preceding indeterminates as one can see that the num- 

ber of equations equales the number of indeterminates. 
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• "ne total number of the equations to be resolved is therefore : 

n 
(30) N = ~ f(n) = -6 + n(n+l)(n+2)(Dn+ 19) 

2 4 ! 

particular, one can thus calculate derivatives F~ n) (y z 0). In 

This calculation including all the initial scalcry derivatives of the three 

characteristic functions V, p and p can be simplified as it has been shown in 

the case of second order derivatives considering the lines : 

(31) ~(n)(6r~ ) t  n = l~(n+l)tnx ; ~ tny(n+l) ; ~ tnz(n+l)l 

as well as tables (14) for A = V, p, p in the form : 

r ptq 6xP6tq 6yP6tq 6z p 6t q 

One can see that one has thus to resolve according to the values of 

n successively : 

n 2 3 4 5 6 .... 

~ (n) 23 56 II0 150 301 .... 

23 79 189 379 680 .... 

scal~ry equations the number of which can be reduced thanks to (31) and (32). 

In particular A, B ..., H, ... designating polynominal expressions in 

relation to M the degree of which is equal to the index, one obtains : 

% (o) "[! ( F'" (y z 0) = M2 -~"' (0) + ~ ~" f) + 

t3 6(l-p 2)(M 2 +I) ~8 (~2(f)) 2 

(33) + I BIO,$ '' (O).~(f) + 73 DI2 .~(f) + 73, FI2 .~3(f) + 

C12 El2 G|2 

+--3 F]4 ~4(f)+ ~3. D]4 ~5(f)+--3 HI6 .~6(f) 
C.E16 . C16 . c ,LI 6 

in which ~i(f) are still quantities dependent on the body. One obtains : 

~3(f) = 16r f x 6(2)(6 f)x ~r~ 2 I + 
r (6rf x 

(34) 
6 (2) ~ f)> <~rf ~r(6rf ) + Tr < r 2 ( ~ - d~t <~r(6rf)>. x x ~--~> 
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given the considerable complexity of calculations ; it has been 

_(IV) except for y = z = 0 corresponding to the apex of impossible to develop ~ 4 
t 

the shock wave. 

- A~pr_o_xi_m_a_t_e_equa_t!_ons__of_non_-s__ta_ti_on_a_rz_~he~ : 

The proceding calculations permit to write the equation of non-sta 

stationary shocks in the form of a 4-degree polynominal expression : 

t 2 
= ' " (y z O) + F (y z t) f (y z) + t F t (y z O) + -7 Ft2 

(35) 
t 4 FIV t3 F"'" z O) + (y z O) 

+-~ t3~Y ~ t 4 

This represents with tolerable approximation these shock waves for 

three spatial variable flows and its evolution in the vicinity of the starting 

point of the body. Now the considered shock waves exist whatever value t has as 

long as velocity remains supersonic. It is therefore interesting to approach 

the equation of these waves by an analytical expression valid within the longest 

possible lapse of time, 

If function F (y z t) is uniform, one can accelerate the convergence 

of the associated Taylor series. WYNN'S E-algorithm corresponding to PADE'S 

diagonal approximation will be chosen. Thus the fractionary approximation of 

the equation of non-stationary shocks will be determined in the form : 

t! If(yz) Ft2(Y Z O) - 2 F't (y z 0)] t - 2f(yz).F'(Yt Z O) 
(36) [|,1] F (yzt) = 

t! t. Ft2 (y z O) - 2 F' (y z O) 
t 

whose field of definition is that of PADE'S first order diagonal approximations. 

It is interesting to notice that in the case of very high velocities 

of the body ~ -> co one can write : 

2| F' ~ (y Z O) ~ ~ ~r f~ x ~J> t (y z O) M 

Ft2(Y z O) '~ (1 + p 2 ) , £ 1 ( f )  + (1 -  ! a2 ) .~2 ( f  ) 
3!a2+ 1 

One can then see that, for an analytical body, approximation (36) remains valid 

for t > O. It is clear that such is not the case if the body's velocity is 

~ndeterminate. 
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- D~_t_ermination_of_d_et_a~_hed_s_ta_tio_~_a_~z_s_h~h~ : 

It is possible to infer from the foregoing results approximate 

formular determining the positions of the detached stationary shocks created 

by the movements of blunt analytical bodies in translation motion. 

In effect, when the second derivative ~"(t) vanishes for t -> 

the motion of the body tends to become unifo©m. 

It is then logical to admit that the motion of the fluid in relation to a mark 

linked to the body tends to become stationary. Consequently the position of a 

stationary shock results from the knowledge of F(y z t) for t--~oo. It is simi- 

lary logical to admit that the stationary flow is reached all the more rapidly 

as the velocity limit of the body is reached more rapidly. One will place one- 

self in the case when is chosen so that : 

t ~< 0 : $ (t) = O t > : ~ (t) = t. ~' (0) 

In any space of time when F(y z t) is an analytical variable dependent 

on time, one can write : 

oo 

(37) F (y z t) ~ ~ aj(yz).t j 
j=O 

and one has indicated a calculation process of a. coefficients. There are seve- 
J co 

ral methods allowing to replace the analytical function Ya.t j by a sequence 

of functions converging towards F(yz) in the field of O j 
L 

convergence of the entire sequence a.t j and which are definite whatever the 
3 

value of t is and which have a limit when time increases indefinitely. 

Within the framework of the e-algorithm theory supposes 

n 
(38) A = ~ a.t j n ~ 0 

n 0 J 

is a converging sequence whose terms are dependent as parameters. 

Among others this theory proposes to replace this sequence by another converging 

more rapidly towards the same limit or converging to a more extensive field 

than the initial sequence. 

PADE'S n-order diagonal approximation fused in (36) for n = 17 is 

defined by : 
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(39) In, n| A n = 

t nAo  

al i 

t n 1A l ) .............. t ° An 

a 2 ) ................. an+  l 

an+ l  ~ . . . . . . . . . . . . . . .  a 2 n  

n n - 1  
t ~ t 

a 1 ~ a2 

~..•......• ..... • t ° 

................ an+ ! 

a n ~ an+l ~ ................ a2n 

Pn (t) 

Qn (t) 

which leads in particular to : 

P1(t) 
lim 

t ~ Ql(t) 

P2(t) 
lim 

t = Q2(t) 

(4O) 

2 
aoa 2 - a i 

a 2 
2 

ao(ala 4 - a~) - a1(ala 4 - a 2 a 3) + a2(ala 3 - a 2) 
2 

a2a 4 - a 3 

P (t) A 
lim n--5----- = (-I) n 

t =o Qn(t ) 

with : A = 

a o , ald ........ a n 

a 2 ~ a 3 ~ ....... an+ | 

a n ~ an+|) ...... a2n 

and 6 being the cofactor of a 

sequence 

(41) 

in A. 
o 

As to SttANKS'S t r a n s f o r m a t i o n s ,  t h e y  a r e  d e f i n e d  by  a s s o c i a t i n g  t o  

A the sequence : 
n 

A 2 
An+l" An-l- n n > 1 

B = 
n 

An+l + A n - I  - 2 A n 
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(42) 

The process can be iterated by considering the sequence : 

_ B 2 
C = Bn+| Bn-I n n ~ 2 
n 

Bn+ 1 + Bn_ 1 - 2B n 

and so forth. 

t -> oo 

(43) 

In each of these iterations the first term B! C 2 ... has a limit for 

lim B I (t) 

lim C2(t ) 

2 
aoa 2 - a I 

a 2 

2 22 
aoa 2 - a I (ala 3 - a2) a 4 

2 2 
a 2 a4a 2 - a 3 a 2 

One can then see that PADE'S approximation If,I] and SHANKS'S first 

order B 1 have the same limit which we shall call first order approximation. 

On the contrary, second order approximation differ. 

- ! l ~ ! ~ _ ~ l ~ 2 ~ _ ~ ! _ ~ ! ~ ! ~ l _ ~ h ~  : 

When the studied function is determinate, which is the case here, 

the choice between an approximation method and another can only be made through 

a comparison with accurate numerical results relative to know particular cases. 

Concerning the approximation of function x = F(y z t) representing 

the stationary detached wave, the preceding calculations have been conducted to 

an indefinite point (x, y z) only up to n = 2. 

Placing oneself at a mark linked to the body, it follows from (35) 

and : 

_ ~2 M 2 + 1 - ~2 1 
(44) F't (y z O) - ~'(0) = c. ~Sr f x 8 f~2 r ' 

M 

that in the vicinity of the initial time one can write : 

(45) F (y z t) = f (y z) + ~t -~2 M2 + 1 - -~2 <6rf x ~--~>~l~ + tSF, ' 
t2 (y z O) 

M 

in which the expression of the second derivative follows from (26) with 

$"(O) = O. In these conditions PADE'S (or SHANKS'S) first order approximation 

gives a position of the detached stationary shock : 
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(46) x = f(y z) - 2( ~2 M2+ I - ~2)2.(M2 + 1).d 4 I (~r f x 6r f) 

M 2. A8.~ 2 (f) - M 2. (M 2 + l)~A6.~l(f) 

In this expression the velocity of the body and the conditions of 

the motionless fluid interven through the normal number of Mach which plays 

the role of an auxiliary parameter. There results a certain complication even 

for very simple analytical bodies. 

As shown above the permanent motion will be reached all the more 

rapidly as the body's velocity is high. In this hypothesis the preceding rela- 

tion is consideratly simplified and leads to the approximation : 

(47) x = f (y z) + 2 ~2(3 ~2 + I) <~r f X ~--~> + ~ ~22> 
(I + ~2).£I(f ) + (I- ~2).£2(f) 

The field of validity of (46) remains to be specified in relation to 

~4~as well as to r. As in the case of (47) it is linked to that of PADE'S 

approximations for the accelerated sequence. 

It can easily be verified that if analytical function f(y z) is chosen 

as uniform and convex everywhere, the field of definition of (47) remains limi- 

ted. 

The application of (46) or (47) to the two dimensional flows (or 

revolutions) leads for the body's curve x = ~ (y) to 

2 ~2(3 ~2+ I)(I + ~,2)2y + ~ I ~ 

~(Y) = ~(Y) - (I + ~2)y . ~,, _ 2y- ~"-0 '2 + ~ (I+ ~2).(|+ ~,2)~, 
(48) 

and : 

(49) 
2 (~2 M 2 + I -~2)2(M 2 + I),C4(I + ~,2) . y 

(y) = ~(y) - 

I[M2 A8 - 2(M2 + I) A6]-y.~'2~" + M2(M2 + l)A6(l+~'2)y~"l 

+ ~ M 2 (M 2 + I) A 6 (I + ~,2)~ 

with M = ~<; + +'~ 1 

coefficient ~ being equal to 0 or 1 wether the problem is 2-dimensional or 

axisymmetrical in relation to Ox. 
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- Distance of vertices : 

In order further to specify relation (46), suppose that the body has 

been chosen so that for y = z = O one has : 6rf = l-l, O, O[ 

The corresponding point will be called vertex of the body. Designating R l and 

R 2 the principal radii of curvature at this point, one has with the utilized 

notations : 

(50) 

l Net I~r(~r~)l 
H = Rl R2 

The vertex of the shock surface will be the point of the wave 

situated on axis Ox. 

The calculations have been conducted at the vertex up to n = 4. 

One can therefore work out not only PADE'S approximation [l,l] but also 

SHANKS'S second order approximation Iformulae (43~. 

Designating h I the first order approximation of the distance of 

vertices one obtains : 

(51) h I = - 

M2 o [(I + ~2) M2 o - ~2](M~ - I) 

In the second order approximation considered here one has : 

3 P4" $8 J 
[52) h 2 = h I. I + ]-~ . Q4" T8 

In which one has : 

(53) 

P4 = M4 - (4v2 - I) M 2 - 4 (l _~2) 
o o 

Q4 = MY + (2~2 + I) M 2 + 2 (I _~2) 
o o 

S 8 = M 8 + (-6~ 4 + 8B 2 + I) M 6 + (18B 4 - 12B 2 + 9) M 4 + 
o o o 

2 
+(-18  ~4 + 16 ~2 + 2) M 2 + 6 (I _~2) 

o 
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T 8 = M 8 + (18 p4 _ 8 p2 + 2) M G - (38~ 4 - 36 ~2 + 7) M 4 + 
o O o 

(53) 2 
+(22 p4 _ 17p 2 + 10) M 2 - 2 (1 - ~2) 

O 

and in which M is the normal initial number of Mach at the vertex : 
O 

(54) I ] 
D~ 2 

M = ~ + + I 
o 2(I  -!a 2) 4(l-Ij2) 2 

It may seem paradoxical that the second order approximation is 

only dependent on ~r(6rf) and not on third order derivatives. This follows 

from the fact that one is placed at point y = z = 0 

Again, placing oneself in the field of high velocities the preceding 

expressions had to the approximate formulae : 

(54) 

1 2p2(3B 2 + 1) + ~I~_.,Zt 
hl  = ~ 1 + B2 

- Curvatures of shocks at the vertex : .................................. 

In order to calculate the principal radii of curvature p! and O 2 

at the point of the shock wave situated on Ox, it is necessary to calculate 

the spatial second order derivatives of F(y z t). Now, these derivatives are 

known onl~ up to n = 2 when one derives also in relation to time. It is there- 

fore only possible to apply PADE'S [I, I] transformation. 

2 
1 1 (to 2 - 2 n )  . R 6 

- -  + - -  = ~ - 

Pl P2 m3. $8 _ 2 ~ . T  8 

(55) 
m2 ,~ R6 

1 

PlP2 ~2 . Sg-  ~.  R 6 
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with : 

(56) 

R 6 = 4 M 2 [(3~ 2 + I) M 4 - (2~ 2 - 3) M 2 - F2] 
o o O 

S8 = _(~4 _ 6~2 _ 3) M s + (4~+ 3~ 2 + 7) M 6 + (-6~ 4 - 7~ 2 +7) M 4 + 
o o O 

+(4B4 _ 3H2 _ 1) M 2 _ B4 + ~2 
O 

T8 = _(~4 - 9~ 2 -4) M 8 + (4~ 4 + 4~ 2 + |I) M 6 + 
O o 

+(-6~ 4 - I0~ 2 + |0) M 4 + (4~ 4 - 4~ 2 -l) M 2 _ ~4 + ~2 
o o 

which lead to : 

(57) 

CONCLUSION : 

The presentation of an application of the E-algorithm to a well- 

determined physical problem demonstrates the difficulty of the choice between 

such and such approximation. 

The advantage of the acceleration processes results from the fact 

that they permit to place oneself immediately closest to the accurate solution 

and the initial value of numerical calculations. 

In the preceding formulae (distance of vertices, curvature at the 

vertex) are applied to the case of a spheric or paraboloidal body with a 

leading angle, equal to O, eomparaison with the numerical results obtained 

from computers through longer methods demonstrates that the convergence of 

approximations seems to be correct and that even with reference to curvature 

without being excellent the first order approximation gives reasonable results. 

The method used here is a direct one, the shock being obtained 

from the given body, we have limited ourselves to first and second order 
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approximations, the parameters of the problem remaining indeterminate. 

It must be noted that PADE'S methods applied up to the twelfth 

order by computer lead to remarkable results for the inverse problem. They 

are comparable to the results obtained here in the considered cases, i.e for 

a perfect diatomic gas, an infinite upstream number of Mach and on axisymme- 

trical flow, the chosen shock surface being a paraboloid. 
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CYCLIC ITERATIVE METHOD APPLIED TO 
TRANSONIC FLOW ANALYSES~ 

H. K. Cheng, University of Southern California 
Los Angeles, California 

and 

M. M. Hafez, Flow Research, Inc. 
Los Angeles, California 

SUMMARY 

This paper reviews recent works on acceleration 

solutions of elliptic and mixed-type problems, using 

fractions. The study focuses on the question of how 

relaxation methods currently available for transonic 

with minimal alterations in computer programming and 

The theoretical basis of the work is similar to 

techniques for iterative 

algorithms related to Pad~'s 

to speed up convergence of 

and related flow computations, 

storage requirements. 

the power method, but allow- 

ance is made that moduli of some of the eigen-values can be very close to one 

another and to unity. The study contributes to a clarification of the error 

analyses for the sequence transformations of Aitken, Shanks,and Wilkinson, and 

to developing a cyclic iterative procedure applying the transformations to 

accelerating large linear and nonlinear systems. Use of the first and second 

order transforms similar to Shanks' (corresponding to the second and third rows 

in the upper half of Pad~'s Table) is shown to be effective, but their subtle 

differences from the latter prove to be crucial. 

Examples illustrating the accelerating technique include transonic flow 

as well as model Dirichlet problems. Reduction by a factor of three to five in 

computing time is possible, depending on the accuracy requirement and the order 

of the transformation. The possibility for reducing the computer storage require- 

ment via Wynn's recursive identities is examined for a linear system in Appendix A. 

+This research was supported by the Of f i ce  of  Naval Research under Contract  Number 
N000I 4-67-A-0269-0021. 



102 

I. INTRODUCTION 

Many current computation methods in fluid dynamics make use of relaxation 

procedures, wherein solutions are obtained after a sufficiently large number of 

iterations. One recent advance in this respect is, perhaps, the calculation of 

plane transonic flow by Murman & Cole l and the subsequent extensions by many 

workers. (For example, see Refs. 2-4.) These methods~using type-dependent schemes 

in the discretization and following line-relaxing procedures~succeed in capturing 

shock waves in supercritical flows. The computer storage and the number of oper- 

ations of the programs are low enough to make the computation possible even for a 

modest institution. However, the computer time of 400 -lO00 iterations required 

for the more complicated problems may still demand I/2 to 2 hours on an IBM 360 

(or 370), and 10 - 40 minutes on a CDC 6600. Use of acceleration technique with 

a savings in computer time by a factor of 3 or 4 is certainly worthwhile, especially 

if one has a great number of problems to solve. 

The convergence rate of these relaxation procedures will depend on the largest 

eigen-values of the iterative matrix, ~X.~ ~ referred to subsequently as the spectml 

radius. The error (norm) at the k th iteration is, in most cases, gauged by I~,,I k 

The need of acceleration follows from a rather well-known fact that the spectral 

radius tends to unity, as the mesh size vanishes. (See for example, Refs. 5-8.) 

The central question in the following is, therefore~ how to speed-up conver- 

gence of relaxation methods currently available for the transonic flow and similar 

computations with minimal alteration in computer programming and storage require- 

ments. 

Our acceleration technique is basically a cyclic iterative procedure; trans- 

formations related, but, not identical, to the nonlinear transforms of Shanks and 

Aitken, and to the Pad~ fraction are applied at the conclusion of each iterative 

cycle. 

Although the genesis of our study may be traced back to the Pad~ fraction, 
8 

its rational basis is derived from the power method of Fadeev & Fadeeva , but, 

special allowance is made in the error analysis that the magnitudes of some of 

the eigen-values can be very close to unity, and to one another, and may also 

repeat themselves. 

An algorithm using ~d~'sfraction has been employed recently by Martin & Lomax 

to accelerate their relaxation method for transonic flow. 9,10 Their basic 

iterati~e procedure takes advantage of a fast, elliptic solver; but, it still makes 

use of the type-dependent schemes similar to other line-relaxation programs (this 

is, itself, quite novel). In their acceleration procedure, however, a three-term 

expansion in an artificial parameter ~ is used; solutions to a 3rd-order 
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perturbation problem are then used to generate the Pad~ fraction (at E = l). A 

savin~ in computer time by a factor of nearly two has been reported for certain 

(but not all) cases studied. 

Much of the material used below is taken from our work on "Convergence 

Acceleration and Shock Fitting for Transonic Aerodynamics Computations", AIAA 

paper 75-51o An updated version of this work has been distributed as an 

University of Southern California Report. II This talk will concern primarily the 

acceleration technique, and we shall take this opportunity to examine more closely 

the underlying ideas, and their subtle differences from those of Shanks 12 & Pad~ 13. 

What we hope to convey in the following is that only the most elementary of the 

transforms and their equalities have been used; they, nonetheless, have been very 

helpful. 

II. REMARKS ON PADE FRACTION AND SHANKS SEQUENCE TRANSFORMATIONS 

The use of transformation to improve the convergence characteristics of 

sequences is a recurrent theme of this proceeding. One class of transforms, 

which bea~a close relationship to the key equations in our method, is that of 

Shanks and the corresponding Pad~ fractions. 12,13,&14 The simplest among these 

is the "el" transform (singled-out in block on the left side of the diagram 

inserted below), which predicts the convergence limit ~ from three successive 

iterates (:~k-, ' ~k~ and ~k~l • This formula has a long history and is referred to 

in some quarter as the ~z _ process of Aitken. 14 Considering (~k as the 

k-term partial sum of a series for an analytic function, Shanks identifies one of 

his transformed sequences ~, of (~:)k (to which the "el" belongs) with that of 

the r th row of the Pad~ table above the diagonal. ~ 

SHANK'S HIERARCHY PADE FUNCTION 

e, e~ % e. 
2 Z 

e, (~ )  = - <- 1 

_ _ 

to, "r. r2,- 
to2 r2, r ~ -  

"rnrl - 

i=1 i=s 

%o4). $..,- 
t',.a - 

- rm~ - - _ 

\ 

~(~)= Do +~t + b~t ~+ . . . .  

rm. =Pm 

41n Shanks' original paper the e n is written as ek, with k denoting the order of 

the transform. 
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Much work has been done in uncovering the many important and interesting 

properties of, and identities among, the elements in the Pad~ Table, hence, the 

en-sequences. (See for example, Refs. 15-17.) But much has yet to be learned 

about the error estimates in general applications. A rather superficial remark one 

could give in this regard is thi~: If the ~'5 are the iterative solutions to 

a nonlinear scalar equation 

then the e I transform predicts the limit (I) with an error comparable to the 

square of the error in the original sequence. The transform in this case is 

simply a derivative-free variant of Newton's method. But, this superlinear 

accuracy does not hold for a system of equations involving more than one unknown; 

the accuracy of the transforms in this case must be established on a different 

basis. There is a second observation related to the accuracy of the e transform, 
n 

which is also quite well known after Shanks original workl~ namely, the transform 

e n of ~ represents the exact limit ~ , if the sequence ~ has precisely 

the transient behavior for successive k in the exponential involving k th powers 

of qi~ 

It is apparent that convergence will require the magnitude of each ~[ to be less 

than one; it also follows that the prediction would be exactly correct, if the 

sequence ~ happens to be the partial sum of n geometric series. 

The stipulated exponential transient cannot be one of general validity~because 

there is no a priori reason that the iterates of a general scalar equation should 

not approach its limit algebraically! However, for iterative solutions to a system 

of algebraic equations of interest, a similar exponential transient does apply to 

each component of the solution near the convergence limit. This basis is provided 

by the power method to be discussed below in Section 3. 

In passing, we may observe that, owing to the storage limitation, application 

of the e n or equivalent transform beyond e I and e 2 may not be easily accommodated 

in a computer program. Therefore, our acceleration scheme has been limited to 

these corresponding to elements far removed from the diagonal in the Pad~ Table. 

This is in contrast to most applications of P~de fraction in fluid mechanics 

today. 17-20 

Ill. THE POWER METHOD 

In our application involving a large algebraic system, the unknown is the 

velocity potential ~ , and its k th iterate is ~k They may be considered as 
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"vectors" with components as many as the number of total grid points used in the 

relaxation method, say N. The new iterate at the (k+]) iteration, is a function of 

the "vector" ~ 

determined by the difference schemes and the iterative procedure used. 

~/~ as a perturbed solution from the limit convergence 

%=O+E~, E~--,-o. 

We regard 

Near the limit, the nonlinear iterative equation yields a linear, recursive 

relation for the error vector 

~kel"- Q ~k 

where Q is the Jacobian matrix of the function g of ~ , independent of k and ~k. 

If the eigen-values of this matrix~[sdredistinct, we may represent the initial 

error vector eo by a linear combination of the eigen-vectors 
N 

Eo = 2~( ~ 
This leads to a form for the error vecto~ 

~ = ~( ~, ~ 
It shows that the error vector decays (~?~plifies) exponentially in k. For 

convergence, the magnitudes of the eigen-values must be less than one, 

just like the requirement on the ~ in Shank's exponential transient. This 

is the main base for the power method of Fadeev & Fadeeva~as well as the two of 

our transformations to be discussed below. 

The linear recursive equation for the error vector has an exact 

analog in the discretized version of the time-dependent system 

C ~ =A  ~0 , wi th Q = exp. ( ~ t  C - ' A )  . 

From t h i s ,  we may see the prospect f o r  a c c e l e r a t i n g  a pseudo-unsteady f l u i d  mech- 

anics problem. 

Let us adopt Fadeev & Fadeeva's r esu l t  and o rde r  the e igen-va lues  accord ing to  

t h e i r  abso lu te  magnitudes 

14,1> l~J >I~, I  > . . . .  > I~,I > I~ , , , I>  . . . . .  > 14,1. 

A f t e r  long enough i t e r a t i o n s ,  i . e .~  large enough k, one may omit  a l l  but one term 

assoc ia ted w i t h  the f i r s t  eigen f unc t i on  I/',. This~ a f t e r  e l lm ina t ing~,3~ ,~ leads  to  

our f i~ t -o rder t rans fo rm,  which p red i c t s  the l i m i t  ~ from two successive i t e r a t e s  
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with an unknown eigen-value i~. i If one chooses to eliminate i~. i by three 

successive iteraties, he will recover the el-transform corresponding to the first 

row of the Pade Table 

c~= ~+  
I - " ~ "  I 

However, more useful estimates of ~i 

ents through proper sum and inner products illustrated as, with ~K=E K - 

N I/ i - Js 

A justification for ~'i ' is given in Appendix B. 

To generate formula corresponding to the e 2 and higher-order transforms, we 

simply include more and more higher-order eigen functions into the "transient" 

representation, and obtain 

are obtained by averaging over all compon- 

where Pn = 1 and pj's are constants for the entire field. One of our modest con- 

tributions, delineated in Ref. II, is to analyse the remainder and confirm the 

classical results for repeated and closely spaced eigen values. 

IV. APPLICATION TO A CYCLIC ITERATIVE PROCEDURE 

In the application, the transforms are used as a part of an iterative 

algorithm: the procedure consists of several cycles, each makes k' iterations 

(say lO - 30). The transform is applied at the end of each cycle to yield an 

estimate of the limit, to be used as initial data for the next cycle. The 

sketch in Fig. 1 illustrates the method when the first-order transform is used, 

which needs data from three stages of iterations. Note that these three values 

can be taken from values at k-m> k, and k+m, for some integral m. Additional 

storage for whole sets of field data is required, and it varies from I to 4 sets, 

depending on the order of the transform and ways the eigen-value estimates are 

handled. 

In passing, we note that if the ~process is strictly applied for each 

component, i.e. at each grid point, not only more storage is required but the 

redundant eigen-value estimates implicit in such process would lead to incon- 

sistency and delay the approach to the limit. We find the ~process coverges 

much more slowly in most cases. 

V. EXAMPLE: A DIRECHLET PROBLEM 

In a study described in our report 11, we have tested this cyclic-transform 

technique on line-relaxation methods applied to a model Dirichlet problem, using 
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various relaxation parameters and sweep directions. These numerical experiments 

show that a reduction in iteration number by a factor of three to five is generally 

possible. In the example of Fig. 2, a line Gauss-Seidel procedure is applied to 

the system based on a 9-point central difference scheme, for which neither the 

optimum relaxation parameter, nor the spectral radius, is theoretically known 

to the best of our knowledge. A typical convergence history of the unaccelerated 

results, using a 1/30th mesh, is shown as a solid curve. The abscissa of the graph 

is the iteration number k. The accelerated result based on a 2nd-order transform 

is shown in short dash with circles, which approaches the limit within 1% in 30 

iterations~as compared to three to four hundred for the unaccelerated one. 

VI. EXAMPLES: TRANSONIC THIN AIRFOIL PROBLEMS 

We shall study below the results of application in transonic small-disturbance 

theory governed by the von K~rm~n equation.21 The discussion is confined to the 

flow over a symmetric circular arc airfoil, which has an embedded supersonic 

region. The basic program to be accelerated is one similar to that of Murman and 

Cole I, using an x-mesh of 2½% chord, and a y-mesh near the wing 2% chord. For the 

result shown in Figure 3a, the relaxation parameter is taken to be 1.4 in the 

subsonic region and 0.9 in the supersonic region. This slide gives the conver- 

gence history for the velocity perturbation near the mid chord. The unaccelerated 

result shown in solid curve takes 140 iterations to approach the limit within I%; 

cyclic acceleration using the first-order transform presented in thin solid curve 

takes 60 iterations for the same accuracy. For the results using 2nd-order trans- 

form, only data at the end of each cycle are shown in circles; this takes only 

40 iterations to reach the limit within I%. 

The results in Figure 4b differ from the preceeding one in that, here, a 

uniform relaxation parameter~uJ= 0.95, is used in the supersonic and subsonic 

regions. The convergence rate for the unaccelerated program in solid curve is 

low, as expected, taking 400 iterations or more to reach the limit within I%. 

This is to be compared with the 65 and 30 iterations for the two accelerated 

solutions. 

We have also studied the acceleration of transonic solutions involving 

circulation, i.e. airfoil at incidence. The basic line-relaxation program is 

the same as before, except for a doubling in the number of grid points to account 

for the asymmetry and the use of a somewhat different pair of relaxation parameters. 

One sees from Fig. 5 that the use of the first-order transform in solid curve 

achieves a convergence within I% at 150 iterations for the circulation, whereas 

the unaccelerated one may take more than 400. 

We would like to emphasize that the above examples involve shock waves which 

are "captured", so to speak, by the numerical procedure - thanks to the "numerical 
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viscosity" inherent in the computer program. Because of this, the flow detail 

near the shock is lost. A shock-fitting method, which modifies the computer 

program to fit the shock as a surface of discontinuity, has been developed. 11 

The natural question to be asked is whether acceleration and shock-fitting 

techniques can work together. The answer is an affirmative one. In Figure 5, 

we present the shock and sonic boundaries from our iterative, shock-fitting 

solution, computed for a slightly supersonic Mach number. The unaccelerated 

result obtained after 240 iterations compares well with that obtained by Magnus & 

Yoshihara, who used a shock capturing method based on an unsteady approach. With 

acceleration based on a 2nd-order transform, the very same shock-fitting solution 

is recovered in 64 iterations. 

VII. CONCLUDING REMARKS 

In summary, our study with the transonic flow and other examples show that 

the cyclic acceleration techniques based on sequence transforms may effectively 

increase the convergence rate and the efficiency of the relaxation methods, with 

minimal programming and storage changes. A reduction by a factor of three to 

five in computer time is possible, with and without shock-fitting. In fact, 

where accurate description for the shock is important, the time saved by acceler- 

ation with shock fitting can be 6 to 36 fold. One observes that the above 

demonstration involves only the use of some of the most rudimentary forms of 

sequence transforms. With an increase in data storage capacity (or facility), 

it should be possible to employ the more sophisticated higher order transforms 

and their recurrence relations which are discussed in other parts of this 

Proceeding. In the meantime, possibilities for reducing the data storage require- 

ment for the higher-order transforms do exist. This is supported by a study 

described in Appendix A below for an iterative procedure applied to a linear 

system, making use of Wynn's recursive relations for the ~-algorithm. 

APPENDIX A. IMPLEMENTATION OF WYNN'S 
~-ALGORITHM FOR APPLICATIONS 
TO ITERATIVE MATRIX EQUATIONS 

In Ref. 22, Wynn uses the ~-algorithm as an acceleration technique for 

iterative vector and matrix problems. + The effective use of the transforms in 

the cyclic iterative method discussed in the text, as well as the corresponding 

elements in the ~-algorithm, are limited, in practice, by the increased storage 

requirement for the higher-order transforms 

higher-order transforms without the increas 

below for a linear system. This is accompl 

+The symbol "~" employed in this Appendix, 
vector " E~" used in the text. 

• However, the possibility for using 

ing storage remains, and is confirmed 

ished through application of Wynn's 

is not to be confused with the error 
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rhombus rule, and other identities for a linear iteratlve equation system. The 
22 

result provides an alteration from Wynn's origlnal procedure with a substantial 

savings in data storage. 

Wynn's Recursive Relation Applied to Vectors and Matrices 

The power of the ~-algorithm lies in the fact, established through many 

examples, that if the sequence ~o, ~ , ~z ..... ~x ....... i.e., 

is slowly convergent, then the numerical convergence of the sequence E~ , -z , 

4 , "'" , ~25  , ... , i.e., _(o) 

to the l i m i t  (or a n t i l i m i t ) ,  wi th  which sequence { O x t  is a s s o c i a t e d ,  is f a r  more 

rapid .  In the s c a l a r  case ,  the q u a n t i t i e s  ~(k? s a t i s f y  the rhombus ru l e  15 

E(k} E~÷,~ I 
$ , l  = ~_f @ 

(A.l) 
which is closely related to the Shanks' transform. As is well known, the elements 

generated in this manner in the E-algorithm may be identified with those on the 

upper half of the Pade Table (cf. Sec. II in text), hence, those in ShankS' e n 

transform , 

2n ,n  
( A . 2 )  J 

with ~(k) = ~ ~ and setting E~ ) = 0 

In cases in which ~:)x is a vector or a matrix, the algorithm is still mean- 

ingful, provided the inverse of the entity is consistently defined. Wynn has 

considered the following alternative definitions. 

(i) Primitive Inverse: In this case, each component is considered 

independently; it amounts to a simultaneous application of the scalar 

~-algorithm to components of the array. 

(ii) The Samelson Inverse of a Vector: In this case, the inverse of the 

vector ~ : (X, XI,....,XN) is taken (after K. Samelson) to be 
N 

X - ' ~ ( ~  Xj X J ' ~ ' c a '  ~ ' ' ' ' ' ' ~ " ) '  (A.3) 

where ~ is the complex conjugate of ~ . 

(iii) The Normally Defined Inverse of a Square Matrix: This was not 

recommended for large systems. 

Wynn discusses in Ref. 22 applications of the algorithm to numerical analyses, 

including boundary-value problems, initial-value problems, Fredholm and Voltera 

integral equations, and differential equations. 
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~/ynn's_Procedure for Acceleratincj Relaxation Solutions 

Of particular interest are Wynn's application to the acceleration of the 

Jacobi and Gauss-Seidel relaxation methods for iterative solution of large systems 
22 

of linear algebraic equations. 

cI k) 
For subsequent discussion, it is convenient to arrange the array of ~s into 

the familiar pattern suggested by the rhombus rule, illustrated at the middle of 

the page, where the original sequence {~kl is given on the first non-zero 

column near the left. With the identification given by Eq. (A.2) elements on each 

column corresponds to those belonging to Shanks' e - transform of the same order 
n 

(with the order increasing towards the right). The diagonal elements in the Pad~ 

Table rn, n are identified with elements on the "roof top" with even subscript, 
_(o)  

i . e . ,  w i t h  E i s  . 

_ - - ' - ~ o ~ c  o 

0 -r~ ~J ~2 E~ ~ ~ ,  ~ ~s 

o E? 

In Wynn's applications, a sequence of vectors or matrices is obtained from 

an iterative procedure for a linear system, say, 

and stored as E(~ ) before the acceleration procedure is applied. For example, 

if we have three iterates Do J ~ , and ~2 , a better estimate will then 

be determined as E~) according to the rhombus rule (which in this case is ident- 

ifiable with Pad~'s rll or Shanks ~ e I {~l } ). If more resolution is needed, 

i.e., if one wishes to obtain E~) ~ with n ~ 4, more iterates (with k ~ 4) 

have to be generated from Eq. (A.4) and stored. 

Underlying this procedure is the assumption that at the end point (towards 

the right) of the application of the rhombus rule, one shall arrive at (or near) 

the limit ~ satisfying the equation 

(~) ~ (~ (~ + ~ (A.4b) 

This assumption can indeed be justified. In fact, inasmuch as the number of 

components of ~, say N, is finite, the exact solution ~ can be predicted from 

Do and 2N (and only 2N) successive iterates, i.e., (~o ' ~ ' ~2~-'.',~,-.., ~, 
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~A/+I ) . . . .  > ~)2N-I, ~)aN, using rhombus rule. This fol lows from Eq. (A.4a), 

for  whicha corollary of the Cayley-Hamilton theorem (cf. Eq. (3.9) on p. 5, 

of Ref. l l )  gives ~/' 
N 

j : o  /=0 (A. 5a~ 
where p j ' s  are the c o e f f i c i e n t s  in the c h a r a c t e r i s t i c  polynormal o f  the i t e r a t i v e  

ma t r i x  Q 

N 

] I ( ' " X ' - ~ j )  -- ~ + ~,/~.'e Pz .A-='F''" +~,V/~. N . (A.Sb) 
)=1 

Now, the right hand member of Eq. (A.5a) is precisely eN(~),__ identifiable with 

E <~-N) ZN ' Hence, the N-component vector (~ is precisely recovered from any 

~Nel consecutive iterates of Eq. (A.4a) upon reaching the end of appl icat ion 

of the rhombus rule (at the 2N th column of the E (/~) array, for  any I<). Note that 

the v a l i d i t y  of Eqs. (A.5a) and (A.5b), hence, the conclusion,requires the eigen- 

values,v~.j15 ~ to be nei ther d is t inc t  nor completely real. On the same basis, i t  

is a lso  poss ib le  to recover  the e n t i r e  set o f  the e igen -va lues  from the r a t i o  

---~(~")JE(5 A) in the limit k - ~ o o  

The above shows that the appl icat ion of the ~-a lgor i thm amounts to providing 

a 2N f i n i t e  steps process for  solving a set of N l inear  equations. This would 

require, however, the storage of ?-N 2 pieces of data, which may not be desirable 

for  a large system. 

Generat ing "(/() ~2s By I terat ions 

Our procedure for  applying the (higher-order) IE-algorithm without the 

penalty of an increased computer storage re l ies on a theorem of the E-array.  

Namely, i f  the successive (vector) I£ -elements on the f i r s t  (non-zero) column 

are generated by a l inear  matrix i t e ra t i ve  law (equation), say, 

~K*, ---- Q ~)~ ÷ b , (A.6) 

successive vector elements on any other even column obey, and can be generated 

from, the same i t e r a t i v e  law, i . e . ,  

~ s  = Q ~,s + b (A.7) 

This special aspect concerning l inear  i t e ra t i ve  systems was not considered in Wynn's 

work. 22 The fo l lowing proof through induction makes use of a recursive re la t ion  

of  Wynn 15 corresponding to the "missing iden t i t y  of Frobenius". 

T 
In Eq. (3.8b~ of Ref. 11, ~'i = I" should be wr i t ten as " i  = n+1". 
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Let E, W, N, and S denote the four elements around an element C in the 

E-array, in the order of East, West, North,and South. Wynn's recursive identity 

for elements of the even column is]5 

, I _ . ~  = ~ +. s._.2__ (A.81 
N-C S-C  E-C ~/-C , 

o r )  

! 
E = ÷ C (A.9) 

L~ + . _ L  _ ._/_t_ 
N-C $ - C  W-C 

To render (A.8) or (A.9) applicable at the second even column (from the left), 

introduce an additional column with E(~)--~oo, which is consistent one may 

with the auxillary column E(.k~_ = O. Let the superscript * refer to a 

successive iterate, e.g. ~);= ~k*l " It will be established first that if the 
i 

iterative law Eq. (A.7) holds in two neighboring even columns, it will also hold 

in the next even column. In particular, we want to show that, if Eq. (A.7) is 

applicable to W, N, S, and C, it will also hold at E which is related to the 

others through rhombus rule, or better through Eq. (8) or (9). Now, multiply 

both sides of Eq. (A.9) by Q, and add ~ ; we have 

Q E "I" ~2 = Q (NI c + l I)~-Qc + D" (A.I01 
S - c  w - C  

But the first term on the right is 

Q (CN-c)-'~ C5-c)-'- (w-c)-')-' 

= (All~ 

If we assume that Eq. (A.7) hold at N, S. W, and C, then the R,H.S. of Eq. (A.IO) 

becomes 
+ C* 

- -  ÷ 

N'~-C * 5"-C* V¢'-C* 

which i s ,  accord ing  to  the recu rs i ve  r e l a t i o n  Eq. (A .9 ) ,  E*. Hence, Eq. (A.IO) 

y i e l d s  

E* = q E * b, (A. 12'~ 

confirming that Eq. (A.7) holds along the next even column (to the right of the 

two even columns containing N, S, C, and W). It remains to show that the same 

iterative law applies along the first two even columns involving elements 

fk) ~ ( k )  
E_ --p-oO , -o "- ~ • 
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This is t rue  under Eq. (A .6 ) .  Hence, 

E~s : Q ~ s  + D , (A. 13) 

prov ided i t  holds f o r  5 = O. 

Departure From Wynn's Or ig ina l  Procedur..e:__ S ign i f i cance  

The s i g n i f i c a n c e  of  Eq. (A.13) w i t h  the accompanying p r o v i s i o n  l i e s  in the 

f ac t  t ha t  a par t  o f  the elements on even columns in the E - a r r a y  may now be 

generated a l t e r n a t i v e l y  by i t e r a t i o n .  In o the r  words, use o f  i t e r a t i o n s  a long 

successive even columns may be exchanged w i th  the s torage requ i red f o r  @o = ~)K, 

which is la rge  f o r  the h igher  o rde r  t ransforms.  We note in passing tha t  the 

ma t r i x  ope ra t i ons  in Eq. ( A . l l ) ,  hence, the theorem~holdsalso in cases where 

the (N-C)-'~ e t c . ,  are def ined by the " p r i m i t i v e  inverse"  and o t h e r  a l t e r n a t i v e s  

mentioned e a r l i e r .  

With the theorem Eq. (A.13) ,  any element in the £ - a r r a y  can be recovered 

from three initial iteratles * =@o , ~'o = ~, , and E o =@z, applying the same 

iterative law to generate elements in the intermediate even columns. This proce- 

dure is illustrated in the diagram above Eq. (A.4a) for a case in which the end 
¢ (o )  

point is ~6 ; the downward arrows indicate generation of elements by iterations, 

the net-work otherwise signifies application of the rhombus rule, Eq. (A.I), in 

the usual manner. The most crucial feature of such a procedure is, perhaps, the 

fact that, in the process of generating intermediate elements in the even and odd 

columns, the data storage never exceeds the requirement for storing three pieces 
_(k) 

of l:S , for any s and any k. We note that, a similar procedure based on 

Eq. (A.8) alone may also be used to recover elements in the even column; this 

however requires storage for four E~ instead of three as in the one described 

above. 

This modified 8-algorithm may be used in the cyclic iterative procedure 

for relaxation methods described in the text, in which the algorithm will be 

applied to predict the limit from successive iterates, but will no longer be 

handicapped by the excessive storage requirement. One potential application 

is to use the procedure continuously (in one long cycle), corresponding to an 

unbroken ZIG-ZAG path along the "roof top" of the ~ -array. This reprents a 

new relaxation procedure,of which the problems of stability and rounding errors 

deserve attention in future study. 
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APPENDIX 8. ALT~I~ATIVE CRITERION FOR 
DETERMINING THE RELAXATION 
PARAMETERS 

Consider  a n o n l i n e a r  r e l a x a t i o n  equat ion  

= 

Let us assume 

and let ;7(~) be a functional associated with Eq. (B.I). 

stationary condition 

~c$) = o 

(B.1) 

Then the 

should p r o v i d e  a system of  equa t ions  f o r  the unknown p a r a m e t e r s ~ l , ~ J 2 J e t c . ,  Eq.(B.I) 

may represen t ,  f o r  example, a minimum e r r o r  p r i n c i p l e .  For a l i n e a r  system, whose 

i t e r a t i v e  m a t r i x  has a dominant e i g e n - v a l u e ,  the ~1 ob ta ined  from l e a s t  squares 

c r i t e r i o n  is i d e n t i c a l  w i th  the inner  product  form of  the /~'l ' i . e . ,  ~ f  in 

our  work.  11 
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Figure 2. Comparison of unaccelerated and accelerated line SOR solutions to a 

model Dirichlet problem. 
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A Technique for Accelerating Iterative Convergence in Numerical 
Integration, with Application in Transonic Aerodynamics 
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Summary 

A technique is described for the efficient numerical solution of nonlinear partial differential equa- 

tions by rapid iteration. In particular, a special approach is described for applying the Aitken acceleration 

formula (a simple Pad~ approximant) for accelerating the iterative convergence. The method finds the 

most appropriate successive approximations, which are in a most nearly geometric sequence, for use in 

the Aitken formula. Simple examples are given to illustrate the use of the method. The method is then 

applied to the mixed elliptic-hyperbolic problem of steady, inviscid, transonic flow over an airfoil in a 

subsonic free stream. 

1. Introduction 

The numerical solutions of nonlinear partial differential equations such as those governing fluid 

flows frequently are obtained most efficiently by iterative methods. The rate of iterative convergence of 

the method chosen is an important consideration, and various means of accelerating the iterative conver- 

gence have been useful. 

One popular device for accelerating convergence of a sequence of numbers such as provided by 

iteration is Aitken's extrapolation formula (or A 2 process) [ 1 ], whose use is described in most books on 

numerical methods [2] and which is identified [3-5]  as a simple Pad~ approximant if the successive 

iterates are partial sums of a power series. Shanks [ 3 ] provided generalizations of Aitken's transformation 

and studied their use. In [6] Wynn gave a simple algorithm for rapid computation of one of the non- 

linear transforms studied by Shanks, and later Wynn [7] discussed application of this acceleration tech- 

nique to vector and matrix problems, including application to boundary-value and initial-value problems. 

The present paper describes a special technique for applying the Aitken extrapolation formula for 

accelerating iterative convergence in the numerical solution of partial differential equations. The method 

was first introduced and used in [8] and then used in a modified form in [9] with additional results 

given in [9,10]. Although the application to be discussed is in a numerical finite-difference solution, the 

general method applies equally well, for example, to analytical solutions or to numerical solutions by 

finite-element methods. The use of the simple Aitken formula with three successive iterates is emphasized 
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(even though the elegant e-algorithm of Wynn with longer sequences could be used), because the eventual 

applications are expected to be those numerical problems requiring significant computer storage. The 

Aitken formula, using only three iterates, requires less storage than other forms of the e-algorithm. 

Often the use of the Aitken formula with iterates obtained arbitrarily by successive approximations 

does not lead to a significantly improved approximation. However, because Shanks [3] showed that the 

formula works best if the sequence is "nearly geometric," the present approach seeks to obtain successive 

iterates that are in a nearly geometric sequence. (Because of the work of Shanks in popularizing the 

Aitken formula and his valuable demonstration of the special applicability to "nearly geometric sequences," 

our past work has referred to the simple extrapolation formula as the "Aitken/Shanks formula.") The 

sequence of approximations can be most nearly geometric if obtained from a power-series construction. 

Therefore, the basis of the present approach is the construction of successive approximations derived 

from formal power-series expansions to obtain as closely as possible a nearly geometric sequence. The 

technique is based on the concepts of perturbation-series expansions (in the sense of Poincar~; see 

Bellman [ 11 ] ). An artificial parameter is introduced in such a way as to obtain three problems to solve 

for terms of a nearly geometric series, for use in the Aitken/Shanks formula. Expansion in powers of an 

artificial parameter has also been considered by Genz [5] to develop a mathematical proof(unknown by 

the authors of [8] at that writing), but the central idea in the present approach is that the artificial- 

parameter expansions are used, in combination with an "artificially extended form" of the equations to 

be solved, as a device to determine most appropriate successive approximations. This technique produces 

the nearly geometric sequence of solutions, even in nonlinear problems. The previous application of the 

Aitken/Shanks transformations to acceleration of iterations in numerical integration by Wynn [7] used 

simple straightforward iterations. The results of such a procedure with use of only the simplest accelera- 

tion formula are described below for an example problem and are compared with the present method. 

The present approach based on perturbation series requires that complete perturbation solutions be 

available on the entire computation field (or entire domain of the equations) at each iteration. This con- 

cept therefore adapts well to a finite-difference method using "direct elliptic solvers" [ 12-15 ] in the 

iterative procedure to determine the solution simultaneously at all points on the entire computation field 

(rather than in successive traverses over the field as in a point- or line-relaxation method). Such methods 

have been referred to as "semidirect" [8 10]. 

After several simple examples to illustrate the method, it is applied to the problem of inviscid flow 

over an airfoil in a subsonic free stream, including conditions for which the flow equations are of mixed 

type (elliptic in an outer region, with an embedded hyperbolic region and a shock wave). This transonic- 

aerodynamic-flow problem has also been treated by Hafez and Cheng [16] using the Aitken/Shanks 

acceleration formula, but in a quite different way, in combination with a line-relaxation method. 
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2. General Formula t ion  of Method 

Consider the general partial-differential or difference equat ion system and the accompanying boun- 

dary condit ions represented by 

L U - F ( x )  = NU in R, (2.1) 

BU = G(x) on B, (2.2) 

where U = U(x) is a vector funct ion of  the posit ion vector x, L is a separable, linear, elliptic differen- 

tial or difference operator, F(x) is a given vector funct ion and N is a possibly nonlinear  operator  such 

that  the operation NU is a vector of  the same dimension as U and has components  that  may  involve U, 

x, and derivatives o f  the components  o f  U with respect to the componen ts  o f  x. Assume for simplicity 

that  B is a linear operator. The boundary  condit ion (2.2) is applied on B, which includes all appropri- 

ate boundary  segments  o f  the domain R. For illustration o f  this nota t ion  and of  the me thod ,  simple 

one-dimensional  examples are given in the nex t  section. Examples  treated in the earlier version o f  [8] 

included (i) the  scalar Laplacian as L with a scalar, if, as U, and (ii) a Cauchy-Riemann operator  

matrix as L with two components  of  U, denoted as u and v. The right side of  (2.1) can be compli- 

cated and can make the equat ion system hyperbolic or parabolic in some regions [ 8 - 1 0 ] .  

In the  formulat ion o f  a problem to be solved, L and F(x) are chosen judiciously and may  be the  

result o f  "scaling and shift ing" t ransformat ions  [ 17,9] for increasing the rate o f  iterative convergence or 

of  addition of  terms [9,10] for stabilizing iterations. For  t rea tment  with additional terms,  an extended 

Cauchy-Riemann solver for use in present calculations has been described in [ 18 ]. 

In the  me thods  to be discussed for the iterative solution of  eqs. (2.1) and (2.2), suppose U l (x ) ,  

U2(x), and U3(x) are successive approximations to U(x) in R. Let  u(x) and Un(X) be respectively 

each a single scalar componen t  o f  the vectors U(x) and Un(x)  (n = 1,2,3). Then  one form of  the  

Ai tken/Shanks extrapolat ion formula [1,3] for an improved approximat ion u*(x)  to u(x) is 

UlU 3 - u2 2 
u*(x)  - (2.3) 

u 1 - 2u 2 + u 3 

Application o f  the formula in this way to individual components  of  U at each x separately is referred 

to by Wynn [7] as use o f  a "primitive inverse" o f  the e-algorithm. Wynn concludes tha t  use o f  the  

primitive inverse is competit ive with use of  other  more  complicated inverses. The work o f  Hafez and 

Cheng [ 16] considers coupling o f  the matr ix  elements  in the numerical  solution,  which is related to the 

more complex inverses o f  the e-algorithm. 

2.1 Artificially extended equation.  For  obtaining power-series solutions to (2.1) and (2.2) that  are 

most  appropriate for use in the Ai tken/Shanks extrapolat ion formula,  it has been found convenient  to 

artificially extend eq. (2.1) by inserting bo th  an artificial parameter  e and an "initial approximat ion ,"  

Uo(x),  to U(x) as follows. Let 

L U - F ( x )  = (1 -e )NU o + e N U  in R (2.4) 
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along with condit ion (2.2). Note that  the solution U to (2.4) with (2.2) depends on e (as well as on 

the specified funct ion Uo(x) ).: U = U(x,e). However, at e = 1, the solution to (2.4) with (2.2) is the 

same as the solution to the original equations (2,1) with (2.2). Fur thermore ,  if Uo(x) is close to the  

solution U(x), then  (2.4) is nearly the same as (2.1) and the solutions then are nearly the same. Thus,  

either of  the conditions e = 1 or U o = U makes (2.4) the same as (2.1). Both o f  these facts can be used 

to advantage in the methods  to be discussed. 

2.2 Method 1. The simplest i teration scheme is a straightforward me thod  of  successive approxima- 

tions. Al though this me thod  can be combined with use of  a relaxation parameter  (see [8,9] ), for simpli- 

city here we omit  that  useful device. If  we let e = 0 in (2.4) and define Uo(x  ) as a previous iteration, 

we obtain the following equations for the iterative solution denoted as Method l(a): 

LU n - F  = NUn_ 1 in R, (2.5a) 

BU n = G(x) on B, (2.5b) 

where subscript n denotes iteration number .  

If, as is frequently done, the Ai tken/Shanks  formula is used to a t tempt  to accelerate the convergence 

o f  the iteration, we denote as Method 1 (b) the solution of  (2.5) for three successive iterates and substi tu- 

tion of  the results for one componen t  o f  each U n into (2.3). (This designation of  Method l(b)  is useful 

for a comparison in an example problem below.) 

2.3 Method 2. The new approach for applying the Ai tken/Shanks formula,  first introduced and 

used in [8] and in a modified form in [9] ,  is referred to as Method 2. The two versions are called, respec- 

tively, Methods 2(a) and 2(b) for later convenience. 

Consider the solution to (2.4) with condit ion (2.2). The solution evaluated at e = 1 is a solution to 

(2.1) with (2.2). The specified Uo(x) can be used as an initial approximation to U. For obtaining a 

mos t  nearly geometric sequence of  approximations,  assume that  

U(x,e) ~ UI ' (X ) + eU2 ' (x  ) + e2U3'(x)  + . . . .  (2.6) 

Successive approximat ions  to U(x) are then  defined by n-term t runcat ions  of  the series (2.6): 

n 

Un = E ei-1 Ui'(x) (2.7) 

i=l 

Al though (2.6) is equivalent to a Taylor series or asymptot ic  series expansion about  e = 0, its conver- 

gence or lack of  convergence at e = 1 is no t  of  particular significance for applicability of  eq. (2.3) (see 

[3] ). If the series (2.6) is subst i tuted into the problem of  eq. (2.4) and condit ion (2.2) and coefficients 

o f  powers o f  e are collected, one obtains equations to solve for the Un' :  



127 

LU 1 - F  = NU o in R ;  BU 1 = G(x) on B ;  (2.8a) 

LU 2' = NU I ' - N U  o in R ;  BU 2' = 0 on B ;  (2.8b) 

LU 3' = N 2 ' { U 2 ' , U l "  I in R ;  BU 3' = 0 on B; (2.8c) 

in which N 2' is defined by the perturbation expansion 

With the definitions (2.7) and 

NU = N U I ' + e N  2' {U2 ' ,UI '  ! + 0 @ 2 ) .  

N2 {U2, U1} -= N U I ' + e N  2' {U2 ' ,UI '  ~ 

one can also solve the following equations for the successive approximations, Un: 

(2.9) 

(2.10) 

LU 1 - F  = NU o in R ;  BU 1 = G(x) on B (2.11a) 

L U 2 - F  = NU 1 in R ;  BU 2 = G(x) on B (2.11b) 

L U 3 - F  = N 2 {U2,Ul t  in R; BU 3 = G(x) on B (2.11c) 

in which it has been assumed that e = 1. Note that if  the right side of  eq. (2.1) is linear in U(x), then 

the problems for the successive U n in eqs. (2.11) are the same as (2.5) for Method 1. 

We denote as Method 2(a) the solution of  eqs. (2.1 1 ) for three successive iterates and substitution 

of  the results for one component  of  each U n into (2.3) to obtain an improved approximation. (If NU 

is linear in U, this is the same as Method l(b)). Note that when the solution is near to convergence at 

any x, significant errors will be introduced by the loss o f  significant figures in applying eq. (2.3). 

An alternative procedure (denoted as Method 2(b)) that eliminates the difficulty near convergence 

is to replace eq. (2.3) by the equivalent expression (at e = 1): 

(u2') 2 
u*(x) = u 1' (2.12) 

u3'  _ u2'  ' 

where each Un'(X) is a single component  of  the vector Un'(X). That is, eqs. (2.8) are solved for Un'(X), 

and (2.12) is used for extrapolation. 

In a numerical solution, u*(x) can be used as the next  Uo(X) in a repetition of  the sequence. 

3. Example Problems and Comparison of  Methods 

This section gives simple analytical one-dimensional examples for illustration and comparison of  

the methods. 

3.1 Example 1. Consider the nonlinear problem 

( d / d x + l ) u  = (1/2)u 2 in 0 ~ < x <  oo, 

u(O) = 1.  

(3.1a) 

(3.1b) 
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The iterative solution by Method 1 is f o u n d f r o m  

( d / d x +  1)u n = (1/2)u~_ 1 , Un(0 ) = 1 .  

The analyt ica lsol f i t ionsfor  n = 1,2,3 (assuming u o = 0) are: 

Ul(X) = e -x , 

u2(x  ) = e -x [1 + p ( x ) ] ,  

1 u3(x  ) = e -x [1 + p(x) + p2(x)  + ~ p 3 ( x ) ] ,  

where 

p(x) = (1 /2 ) (1 -e -X) .  

For  Method 2, the artificially extended equat ion is: 

(d /dx + 1)u = ( l - e ) ( 1 / 2 ) u o  2 + e(1/2)u 2 , 

u(O) = 1 .  

Subst i tut ion o f  

into (3.5) leads to 

u = Ul'(X) + eu2 ' (x)  + e2u3 ' (x)  + . . .  

(d /dx  + 1)u 1' --- (1/2)Uo 2 , 

(d /dx  + 1)u 2'  = (1/2) [(Ul ' )  2 - Uo21 , 

( d / d x +  1)u 3' --- Ul 'U2'  , 

or equivalently, with  e = 1 and eq. (2.7), 

(d /dx + 1)u 1 = (1/2)Uo 2 , 

(d /dx + 1)u 2 = (1/2)Ul 2 , 

(3.2) 

(3.3a) 

(3.3b) 

(3.3c) 

(3.4) 

(3.5a) 

(3.5b) 

(3.6) 

(d /dx + 1)u 3 = (1/2)u22 - (1 /2) (Ul-U2)2 ,u3(0)  -- 1 . 

The analyticai solutions to (3.7) with u o = 0 are: 

Un'(X ) = e-X[p(x)]n-1 , (3.9) 

where p(x) is given by (3.4) and where the  solutions u n to (3.8) are given by (2.7). Evaluations o f  

these solutions at x = 1 and applications o f  the  appropriate forms of  the Ai tken/Shanks  formula are 

given in Table 1. The results for the extrapolated solution u* may  be compared with the  exact solut ion 

to (3.1), 

u(x) = 2( l+eX)  -1 , (3.10) 

Ul(0)  = 1 ,  (3.8a) 

u2(0) = 1 ,  (3.8b) 

(3.8c) 

Ul ' (0)  = 1 ,  (3.7a) 

u2 ' (0  ) = 0 ,  (3.7b) 

u3 ' (0)  = 0 ,  (3.7c) 
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Table  1. Results  o f  Example  1 at x = 1 (u o = O) 

METHOD: l (b)  2(a) 2(b) 

EQUATIONS: (3.2) & (2.3) (3.8) & (2.3) (3.7) & (2.12) 

n Un(1) Un(1 ) Un'(1 ) 

1 0.3678794412 0.3678794412 0.3678794412 

2 .4841515202 .4841515202 .2325441579 

3 .5247721376 .5209005060 .1469959430 

u*(1) = .546583145 .537882842 .5378828426 

Exact u(1) = .5378828428 .5378828428 .5378828428 

evaluated at x = 1: u(1) = 0.5378828428 to ten significant figures. We note first that the extrapolated 

solution u* by Method l(b) is somewhat closer to the exact value than u3, but  not  significantly closer. 

We note further that the third approximation, u3, by Method 2(a) is not  as good an approximation as 

u 3 in Method l, but that the extrapolated solutions by Methods 2(a) and 2(b) are exact except for loss 

of  1 or 2 significant figures. (Method 2(a) is less exact because of  loss of  significant figures in (2.3).) 

The striking accuracy of  Method 2 in this example occurs because the sequence of  solutions produced by 
t i 

Method 2 is precisely geometric, i.e. Un+l/U n = constant for all n at a given x. The difference from 

Method 1 is seen by comparing eqs. (3.2) with (3.8), in which (3.8c) has an additional term that produces 

the geometric sequence. 

3.2 Example 2. Consider next  an example which is linear (so that Method 2(a) would give the same 

results as Method l(b)),  but for which the iterative sequence is "nearly geometric." Let us use Method 

2(b) for this example (eqs. (2.8) with (2.6), (2.7), and (2.12)). 

The problem is 

du 2 du d--x-- = - x ~ - ~ - 2 u  in 0 < x < ~  , u(0) = 0 , (3.11) 

which is written in this way in analogy to more complex problems in which one may put a very simple 

operator on the left and the rest o f  the terms on the right for iteration. (One can also shift the term 2u 

to the left side, with very similar results.) The artificially extended equation is 

du _ 2 = ( l - e )  ( -x  duo du d-x ~ - 2u°)  + e(-x~-~- - 2u) in 0 ~< x < oo 
I (3.12/ 

u(0) = 0 
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Substitution of  (3.6) leads to (with u o = 0): 

d u l ' / d x - 2  = 0 ,  Ul '(0) = 0 ,  (3.13a) 

du2' /dx = -x d u l ' / d x  - 2u 1' , u2'(0) = 0 ,  (3.13b) 

du3' /dx = -x du2 ' /dx  - 2u 2' , u3'(0 ) = 0 .  (3.13c) 

The analytical solutions are 

Un'(X) = ( -1)  n+l (n+l)x  n (3.14) 

and the successive approximations are given by (2.7). The sequence (3.14) is not  geometric, but  since 

£imn--~ [Un+l(X)/Un'(X)] exists at given x, the sequence is "nearly geometric" [3].  Evaluation of  the 

solutions (3.14) at x = 0.5 gives (Ul'  , u2', u3'  ) = (1.00, - .75,  .50) so that the successive approximations 

are (u 1, u2, u 3) = (1.00, .25, .75). Substitution of  the u n' into (2.12) gives u*(.5) = 0.55, which com- 

pares well with the exact solution to (3.11), 

u(x) = (2x + x 2) (1 +x)  "2 , (3.15) 

from which u(0.5) = 5/9 = 0.555555 . . . .  

4. Transonic F low Over an Airfoil 

For  application of  the methods described above, consider two-dimensional, steady, inviscid flow 

over a thin symmetrical parabolic-arc airfoil in a subsonic free stream. At high subsonic Mach numbers, 

part o f  the flow can be supersonic, so we consider the transonic small-disturbance equations, which are 

nonlinear elliptic partial differential equations in subsonic regions and hyperbolic equations in super- 

sonic regions. Transition of  the velocity field from a subsonic region to the embedded supersonic zone 

is smooth,  but  transition from the supersonic to subsonic region is usually discontinuous, through a 

shock wave. The improved finite-difference method of  Murman and Cole [19-22]  captures the shock 

waves (in a fully conservative way) but spreads the rapid transition over several mesh points. 

In [8] a semidirect finite-difference method,  based on the use of  a fast direct Cauchy-Riemann 

solver [ 15], was applied to solving the equivalent o f  Murman's transonic finite-difference equations [ 21 ] 

iteratively for the perturbation velocities, u and v. (The iteration procedure has been formulated in 

such a way that at nonelliptic points terms on the right side of  the difference equations cancel out the 

elliptic character o f  the left side when the iterated solution converges.) Both Methods l(a) and 2(a) 

described above worked well for subcritical and for slightly supercritical (local Mach number > 1) flows, 

except that Method 2(a) could be used only before any part of the solution was nearly converged. In 

[9] the method was extended to strongly supercritical flow by the addition of  stabilizing terms to the 

difference equations and to the Cauchy-Riemann solver [18].  Also introduced in [9] was the method 

version denoted here as Method 2(b), which can be used when the solution is nearly converged. In 

smooth  subsonic flows the acceleration technique is effectively used repeatedly. However, in transonic 
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flows with strong shock waves, the acceleration technique is no t  helpful  at the beginning o f  the  iteration 

when the shock wave and its location are not  well defined. Therefore in [9] it was considered desirable 

to use the  straightforward iteration Method l(a) until  the m a x i m u m  residual is reasonably small, so that  

the supersonic region is nearly defined, and then use Method 2(b) to extrapolate three iterates to a final 

solution. A fully conservative second-order-accurate formulat ion has been introduced in [ 10],  and so a 

fomulat ion that  includes either Murman 's  fully-conservative first-order-accurate formulat ion or the  

second-order formulat ion will be used here. 

4.1 Governing equat ions and boundary  condit ions.  Let the dimensionless X and Y axes be 

respectively along and normal  to the airfoil chord, the  free-stream Mach number  be Moo < 1, and the  

dimensionless velocity components  in the X and Y directions be U,V. One may  then define perturba- 

tion velocity components  u,v through a Prandtl-Glauert t ransformat ion with 13 ~ (1 - M 2 )  1/2: 

U = l + ( r / / 3 ) u ,  V = r v ,  Y = y//3, X = x ,  (4.1) 

which amounts  to shift ing and scaling o f  certain terms (cf. [ 17, 8 - 1 0 ] ,  so that  the  t ransonic small 

disturbance equations take the form 

where 

fx + gy = 0 ,  Uy - v x = 0 (4.2a,b) 

f = f(u) = u - a u  2 , g = g(v) = v ,  (4.3a,b) 

a = r ( 7 +  1)M2/2/3 3 , (4.4) 

in which a is a transonic similarity parameter  and r is an airfoil thickness ratio. Eqs. (4.2) are of ten 

writ ten in terms of  a per turbat ion velocity potential  q~ defined by u = ~bx, v = ~by, and all the develop- 

ments  to be described apply as well to that  potential  equation.  

The equat ion sys tem (4.2) is elliptic, parabolic, or hyperbolic depending on whe the r  u - UCR is 

negative, zero, or positive, where the  t ransformed critical velocity is uCR = 1/2a. The corresponding 

pressure coefficient is Cp = -2(r//3)u. 

The linearized surface boundary  condit ion for the  symmetr ica l  parabolic-arc airfoil, whose upper  

surface is given by Yb(x) = rF(x)  = r(0.5 - 2x 2) in - .5  ~< x ~< .5 (with F(x) = 0 in [xl > .5), and the  

condit ions at infini ty are 

v(x,0 +) = F ' ( x ) ,  (4.5a) 

u , v + 0  as x 2 + y 2 ~ o o .  (4.5b) 

Eq. (4.2a) is wri t ten in a "conservation-law" (or divergence) form, in terms of  flux componen ts  f 

and g. Therefore discretized forms of  (4.2a), for numerical  solution,  can represent in a fully conserva- 

tive way either that  differential equat ion or the corresponding integral form. These discretized forms 

can thus  be formulated correctly to represent transit ions between elliptic and hyperbolic regions [21,10 ].  
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Since only the term fx in the system (4.2) determines the type of  point (depending on the local 

value of  u), one can write the general type-dependent  difference equations in the form: 

(fx)T + (gy)C -- 0 ,  (Uy)C - (Vx) C = 0 ,  (4.6a,b) 

where subscript C indicates a central-differenced representation of  a derivative and subscript T, which 

indicates type-dependent  differencing, may be replaced by E, H, P, or S at points defined respectively 

as elliptic, hyperbolic, parabolic, or shock points [21,10]. At all points where the difference equations 

are clearly elliptic or hyperbolic, subscripts E or H are used. Transition points from elliptic to hyper- 

bolic (progressing downstream from left to right) are P points, and transitions from hyperbolic to 

elliptic are S points. 

For defining the finite-difference operators, Fig. 1 shows a staggered u,v mesh, with the shaded 

area indicating a mesh cell for eq. (4.2a). The center o f  a mesh cell is the point at which ~b would be 

defined on a conventional mesh and is the point that is designated E, H, P, or S. The indices j and k 

indicate respectively the x and y directions. Second-order-accurate central differences are 

(Ux) C = (uj, k - Uj . l ,k ) /Ax,  (Vy) C = (vj, k - Vj,k_l)/Ay , 

(Uy)C = (Uj,k+l - Uj,k)/AY, (Vx)C (Vj+l,k - Vj,k)/Ax • 
(4.7) 

In general, (fx)T is represented by 

AX(fx)T = Afj,k = ( fG) j , k - ( fG) j - l , k  (4.8a) 

where 

(fG)j,k = f((uG)j,k) = (UG) j ,k -a (u2) j ,k  (4.8b) 

and where u G is either a "hyperbolic form" u H or an "elliptic form" u E. With (i) the definition (4.8) 

for the difference operator (fx)T, (ii) a condition to determine whether  each (UG)j, k is represented by 

u E or UH, and (iii) specifications of  u E and u H to obtain the finite differences (4.8a) to the order of  

u j_2 ,  k+l ° Uj_ l ,  k+l  

+ V j - I ,  k 

u j _2 ,  k • u j  

+ V j - I ,  k - I  

• U j ,  k+ I " 
I 
I 
I 

' k ~ j , k - - - - - - V j + l , k  ~ -  ~ ,k  ~ j + l ,  k Z~y 

vj+l, k-i ~- 

Fig. 1 - Differencing mesh and mesh cell. 
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accuracy desired, all four type-dependent  operators are obtained. As derived in [ 10], (i) the second- 

order-accurate elliptic operator, (ii) either the first-order or second-order-accurate hyperbolic operator, 

and (iii) the corresponding parabolic-point and shock-point operators are all produced in (4.6) with (4.7) 

and (4.8) by the following relationship: 

(UG)j, k = (1 -Oj,k)Uj, k + Oj,k[XUj_ 1,k + (1 - X)uj.2,kl , 

where 

(4.9) 

oj, k = 0 (and UG=UE) if  ~ j , k < U C R  , 1 (4.10) 

= 1 (and u G = u H )  if  Uj,k > u C R ,  ) 
~ , k  = (Uj,k + 6 Uj_l,k)/(1 + 6 ) ,  (4.11) 

and where X = 1 for the first-order-accurate hyperbolic operator, X = 2 for the second-order-accurate 

hyperbolic operator, and 6 is a parameter that may be varied from 0 to oo but is derived as unity for 

Murman's first-order-accurate operators [21].  As an example to illustrate, suppose X = 1, 6 = 1, and 

Uj,k < uCR and Uj-l,k > uCR" Then for the shaded mesh cell in Fig. 1, eqs. (4.8) - (4.10) give 

A~,k = Uj,k - uj-2,k - a(u2k - u22,k ) 

which is equivalent to Murman's [21 ] first-order shock-point operator. In a similar way the Krupp- 

Murman first-order parabolic operator [20] is also obtained. Both the first- and second-order-accurate 

hyperbolic operators given by (4.8) - (4.10) with X = 1 and X = 2 are equivalent to upwind difference 

operators originally proposed by Murman and Cole [19];  the fully conservative second-order P and S 

operators were introduced in [ 10]. Analysis of  all these E, H, P, and S operators [ 101 has verified 

their consistency, accuracy, and stability in the examples computed. 

Because of  the slow iterative convergence of  the second-order-accurate iterative method to be 

described, two methods of  adding artificial viscosity have been proposed and used [10].  Both leave 

the scheme fully conservative and formally second-order-accurate. 

The boundary conditions for the finite-difference equations (4.6) are the same as (4.5) but  with 

(4.5b) replaced by a far-field condition on an outer rectangular boundary B: 

uj, k = UB(X,y) or vj, k = VB(X,y) on B (4.12) 

where, for example, u B and v B are given by a Prandtl-Glauert solution (see [ 15,8,9] ). 

For  solution of  eqs. (4.6) with (4.7) through (4.11 ) and with conditions (4.12) by the semidirect 

methods,  one must rearrange the equations so that  the left side is an appropriate elliptic operator and 

provides a stable iteration scheme. One first adds (Ux) C - (fx)T to both  sides of  (4.6a) to obtain 

(Ux)C + (Vy)C = (Ux)C - ( fx )T ,  (4.13a) 

(Uy) C - (Vx) C = 0 .  (4.13b) 
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This set contains a central-differenced elliptic operator on the left side regardless of  the local type of  the 

equations. The nonlinear type-dependent  term has been shifted to the right side where, in an iterative 

procedure, it can be computed from a previous iteration. Although the iteration of  these equations [8] 

converged well for subsonic and slightly supercritical flow, it was found [9,10] that terms with param- 

eters multiplying uj, k and Uj_l, k needed to be added to both  sides of  (4.13a) to produce iterative 

convergence at higher Mach numbers. A more specific form of  the diffe1:ence equations, in which the 

second-order-accurate relations (4.7) have been substituted, is 

in which 

Dj,k(U,V) = Rj,k(U), Ej,k(U,V) = 0 ,  (4.14a,b) 

Dj,k(U,V) - (1 - a l )U j ,  k - (1 +a2)uj - l ,k  +/2"l(vj,k - Vj,k_l), (4.15a) 

Ej,k(U,V) = (uj ,k+ 1 - Uj,k) - #(vj+ 1,k - Vj,k), (4.15b) 

Rj,k(U) -= (1 - a l )U j ,  k - (1 +a2)Uj_l, k - A~ ,k ,  (4.15c) 

and where A~,k is defined by eqs. (4.8) - (4.11) and /~ -- Ay/Ax. The formal order of  accuracy of  

eqs. (4.14) depends on the value of  h used in (4.9). 

4.2 Equations for Method l(a). As described in section 2.2 above, the straightforward iteration 

Method l(a) for eqs. (4.14) is simply 

Dj,k(Un,V n) = Rj,k(Un_l), Ej,k(Un,V n) = 0 .  (4.16a,b) 

For determining each oj, k in (4.10), eq. (4.11) uses Un. 1. The presence of  alUj, k and a2Uj_l, k on 

both  sides of  eq. (4.16a) allows the interpretation and treatment of  these terms as an off-centered time 

derivative, Ou/Ot, multiplied by a constant. When the solution converges, these terms cancel out. The 

semidirect Method 1 (a) proceeds by solving the left side of  (4.16) in terms of  the known right side by an 

"extended Cauchy-Riemann" solver [18] for u n and v n at all points simultaneously. The iteration with 

a 1 or a 2 ¢ 0 needs a reasonable (but very roughly approximate) initial approximation (Uo) , such as a 

Prandtl-Glauert solution. Ref. [ 10] gives variable specifications of  a 2 for best convergence. 

The boundary conditions on (4.16) are 

Vn(X,0 +) = F ' ( x ) ,  (4.17a) 

u n = u B or v n = v B on B .  (4.17b) 

4.3 Equations for Method 2(b). The artificially extended form, (2.4), of  eqs. (4.14) is 

Dj,k(U,V) = (1 - e)Rj,k(U o) + eRj,k(U), (4.18a) 

Ej,k(U,V) = 0 .  (4.18b) 



135 

For  Method 2(b) assume that  

u(x,y,e) = Ul'(x,y) + eu2'(x,y)  + e2u3'(x,Y) + -.. , 

v(x,y,e) = Vl'(X,y) + ev2'(x,Y) + e2 v3'(x,Y) + .... 

The successive approximations are then (for n = 1 , 2 , 3 . . . )  

(4.19a) 

(4.19b) 

n n 

U n =  ~ e i - l u i ' ( x , y ) ,  V n =  Z e i ' l v i t ( x , y ) .  

i=l  i=l 

Substi tut ion of  (4.19) into  (4.18) leads to 

(4.20) 

where: 

R o = Rj,k(Uo) (4.22a) 

R 1 = Rj,k(Ul' ) -  Rj,k(Uo) (4.22b) 

(with u o being used in (4.11) in determining oj, k for use in Rj,k(Ul '))  and 

R 2 = (1 -C~l)(U2')j, k - (1 +~2)(u2 ' ) j ,  k - (Af2) j ,k ,  (4.22c) 

Af2 = (f2)j,k - ( f2 ) j - l , k '  (4.23a) 

(f2)j,k = (1 - Oj,k) [(u2')j, k - 2a(u l 'u2 ' ) j ,  k ] 

+ aj, k { [X(u2')j . l ,k + (1 -X)(u2')j_2,k] 

- 2a[X(Ul')j . l ,k + (1-X)(Ul ' ) j_2,k]  [X(u2')j_l, k + (1 -X)(u2') j .2,k]  } . (4.235) 

The boundary conditions are: 

Vl'(X,0 +) = F ' (x)  ; Vn'(X,0 +) = 0 (n = 2,3) ; (4.24a) 

u 1' = u B or v 1' = v B on B ;  (4.24b) 

u n '  = 0 or v n '  = 0 on B (n =2 ,3 )  . (4.24c) 

With some reasonable approximation for (Uo)j, k, such as a nearly converged solution b y  Method l(a),  

eqs. (4.21), with n = 1,2,3, give three successive approximations Ul ' ,  u2' ,  u 3 '  at each j,k to  use in 

(2.12) to obtain an extrapolated solution. 

4.4 Results and discussion. A research computer  program writ ten to solve the transonic small 

disturbance equations by the methods described above for a biconvex airfoil at zero incidence, includes 

the option of  switching after some iterations by Method l(a)  to the extrapolat ion technique,  Method 

2(a). A conversational version of  the program, for interacting with the program, was run on an IBM 

360/67 computer ,  and computing times were measured on a Control  Data 7600 computer .  

i 

Dj,k(Un', v n ) = R.n_ 1 , Ej,k(Un', Vn') = 0 ,  (4.21) 



136 

Pressure distributions have been computed  for a range o f  subsonic and transonic Mach numbers  

f rom bo th  first- and second-order-accurate formulations.  Examples by Method l(a) are shown on Fig. 2 

for a thickness ratio o f  10 percent and Moo = 0.825. For  this calculation the boundaries were at one-half 

chord upst ream and downstream of  the  airfoil edges and at 3.5 chords above the airfoil. The results com- 

puted on a 39 ×32 uniform mesh  compare well with a line-relaxation program [22] ,  which uses a variable 

and finer mesh.  On a very coarse (19×32)  mesh,  with only 10 mesh intervals on the airfoil chord, the  

first-order-accurate results, of  course, are not  good. The shock is badly smeared, and an anomalous j u m p  

behind the sonic point  that  is characteristic o f  the first-order P operator is exaggerated on the coarse 

mesh.  However, the second-order-accurate results are very smoo th  through the sonic point  and are 

surprisingly accurate. 
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Fig. 2 - Pressure on a thin biconvex airfoil. 
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Figure 3 shows an interesting effect o f  switching to Method 2 before the  i teration has  converged 

enough,  when the types of  all points  are not  yet  quite the same as the  final types. Method l(a) was used 

for nine iterations; then  Method 2(b) was used to obtain the three successive terms at each point  and the  

extrapolated solution shown in Fig. 3. A property o f  the A i t ken /Shanks  extrapolat ion as used in 

Method 2 is that  all the significant figures of  the three successive approximat ions  at any point  contain 

informat ion about  the exact  solution, even though  those successive approximat ions  themselves are no t  

very close to the  enact solution (see example problems above in section 3). It thus  appears possible in 

Fig. 3 that  this procedure may  be picking up the fact tha t  the exact  solution to the equations (or the  

solution on a very fine mesh)  has the well-known logarithmic singularity just  behind the shock,  even 

though  the converged solution on the coarse mesh  smears,over this singularity. Even the finer mesh  used 

by the  program in [22] was not  fine enough to pick up the singularity, partly because that  point  appar- 

ently occurs between the mesh  points  for this case. This phenomenon  illustrated in Fig. 3 is no t  an iso- 

lated case but  is a typical occurrence in Method 2. It may  be tha t  the numerical  solution in Fig. 3 is as 

good as representat ion o f  the exact solution to the equations as is the fully converged solution in Fig. 2(a) 

(circles). 

The most  significant property o f  the semidirect me thod  is the relatively short  comput ing  t ime 

required. On the 39×32  mesh,  the t ime per iteration was measured as 40 milliseconds in a very ineffici- 

ently coded program, but  for various reasons discussed in [ 10] it is expected to be reduced to 20 ms. 

(The direct solver requires only 14 ms) The subcritical cases were sufficiently converged in 3 i terations 

or less, and a slightly supercritical case (first-order-accurate, using Method 2) required 6 iterations. The 
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first-order-accurate case shown in Fig. 2(a) required 20 iterations by Method 1 and, as described above, 

the results of Fig. 3 required only 9 iterations by Method l(a) followed by 3 more by Method 2(b). 

At this writing, the program has not yet been written for the above formulation that includes the 

second-order-accurate formulation in Method 2. It is expected that when this is done, the program can 

be run rapidly with the first-order (X = 1) operators on the very coarse mesh using Method 1, then 

switched to second-order (X = 2) and Method 2 for final extrapolation. 

5. Concluding Remarks 

It has been shown that a special procedure (Method 2) is effective for obtaining most appropriate 

successive approximations for use in the Aitken extrapolation formula for accelerating the iterative con- 

vergence of numerical solutions to nonlinear partial differential equations. The procedure is based on the 

combined use of artificial perturbation-series expansions and an artificially extended equation. It was 

shown in a previous paper [8] that one version of the technique was very effective for accelerating itera- 

tive convergence when the solutions are smooth. The method, in a modified version, has now been applied 

with some success to a strongly supercritical transonic flow problem, in which the flow equations are of 

mixed type and whose solutions have shock-wave discontinuities. The method is expected to be extended 

to more general flows, including lifting airfoils and three-dimensional flows. 
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THE RISE OF A BUBBLE IN A FLUID 

John L. Gammel 
Department of Physics, Saint Louis University 

St. Louis, Missouri 63103 

I. Introduction 

The standard numerical approach to problems in hydrodynamics is to replace 

the appropriate partial differential equations by a set of finite difference equa- 

tions. This approach has several difficulties inherent in it. For example, ficti- 

tious viscosities are introduced and the cumulative effect of these viscosities may 

result in large errors for late times. 

As a new approach, we advocate the exact solution of the partial differential 

equations by means of power series expansions. I This approach has the disadvantage 

that the power series may not converge for late times or in regions of space where 

the flow pattern varies rapidly. I{owever, by use of Pad~ approximants or powerful 

generalizations of these approximations which we have developed for application to 

hydrodynamics, this difficulty has been overcome. 

The problem which we consider as an illustration of our method is that of the 

rise of an incompressible volume of gas (that is, a bubble) which is initially 

spherical. The problem is to calculate the shape of the boundary and the height of 

the center of gravity at subsequent times. The problem has axial symmetry about the 

vertical or z-axis. To label a point on the boundary, we use the polar angle 8 

which is the angle between the vertical axis and a line joining the origin (the 

center of the initial sphere) and the point. The sphere has initially unit radius. 

At subsequent times, the shape of the boundary is specified by 

x = x(t, cos e) 
(i) 

y = y(t, COS 8) 

By known methods of hydrodynamics x and y are obtained as power series, 

1 3 9 3 
y ffi cos 8 + t2( - ~+ ~ COS 28) + t4(- ~ COS 8 +~ COS 38) 

6 9 1 
+ t (=~.~o~ + ~  cos 28) + 
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and x is best calculated from 

~x ~2x + ~7(~2y i 
De ~t2 ~fl ~t 2 + ~) 

=0 , 

which expresses the fact that all forces other than gravity are perpendicular to 

the boundary. 

Section II deals with methods of su~m~ing these series and the information which may 

be gained about the rise of the bubble and its shape at various times. 

II. Methods of Series Summation 

A. The ordinary Pade approxlmant. 

Consider the function 

f(x) = -/l+2x = 1 + 1 5 2 
-v l+x  ~ x - ~  + . . . .  (3) 

Suppose one has only the first three terms in this expansion and wants the value of 

f(x) for some large positive value of x, say x = ~. Substituting x = ~ into the 

series will no__~t result in a rapidly converging expression, w [Were it known that 

f(x) = J(l+2x)/(l+x) , the source of the trouble would be obvious because x = -i/2 

and x = -i are branch points of f(x) so that the series cannot converge for 

IxI > 1/2.] The Pade approximate method consists in writing f(x) as the ratio of 

two polynomials, 

m 
N O + NIX + .. + N x 

f (x) = m (4) 
n 

1 + DlX + .. + DnX 

where D O ffi 1 by choice (were D O ~ i, the numerator and denominator could be divided 

by it with the consequence D 0 = 1), and fixing the values of the N's and D's so 

that were the right hand side of Eq. (4) expanded in a power series in x, the 

result would agree with the right hand side of Eq. (3), that is, the original power 

series, through order m + n. The result is called the [m/n] Pade approximant to 

f(x). For example, for the function of Eq. (3), the [I/i] Pade approximant is 

NO + NlX 1 5 2 
l + D l X :  l + ~ x - - ~ x  + . . . .  (5) 

and cross multiplying and equating powers of x yields 



from which 

Thus 

For x = =, 
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coefficient of x0: N 0 = 1 

1 
coefficient of xl: N 1 = ~ + D 1 

= _ 5 1 
coefficient of x2: 0 ~ + ~ D 1 , (6) 

D 1 = 5/4 , 

N 1 = 7/4 , 

NO= 1 (7) 

7 
~ii_+2 x l+~x 

= 5 (8) 
+x l+~x 

/2 = 1.4. (9) 

The source of this surprising accurate result is that #(l+2x)/(l+x) has a cut, that 

is, a dense sequence of zeros and poles, running from x = -1/2 to x = -i. The Fade 

approxlmant has only one zero, at x = -4/7, and one pole, at x = -4/5, both of which 

lle between x = -1/2 and x = -i. The zeros and poles are rather llke electric 

charges: when viewed from a great distance a complicated distribution of zeros and 

poles looks rather like a single zero and pole. The point x = = is so far away from 
k 

the cut that a single zero and pole suffice to represent the actual analytic struc- 

ture very well. 

Of course, one never relies only on the [i/I] Fade approxlmant: one discuss- 

es the convergence of a sequence of Pade approximants (in our example, the [l/l]. 

[2/2], [3/3], ... sequence). From Eq. (8) and also Eq. (4), one notes that these 

approximants are finite at x = ~. We have used the information that (i/~2~xl~l+x) 

is finite at x = =. In physical problems, such information is usually available. 

The [m/n] Pade approxlmants form a square array, and the approxlmants to be selected 

from this array is dictated by physical information. 
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B. The location of the zeros and poles. 

In the example of Eq. (3), the zeros and poles of the [i/i], [2/2], [3/3], 

... approximants lie between -1/2 and -i, and they become more dense as the order of 

approximation increases; that is, they form a cut. Cuts have no real meaning in 

analysis: in principle they can be located as one pleases so long as they Join 

branch points. The Fade approximents have a definite opinion of their own about 

where the cuts go. 

In many applications, the location chosen by the Pade approxlmant is at best 

awkward. Consider 

f(x) = J(l - x) 2 + 1 (i0) 

This function has branch points at x = 1 ± i. The Pade approxlments cut the func- 

tion along an arc of circle running from 1 + i to 2 to 1 - i (the circle is entered 

at x = 1 and also passes through the origin). This situation is illustrated in 

figure i. Beyond 

// 
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Figure I 

x = 2, the Pade approximants will not converge to f(x), and even if they did, it 

could not be to that value of f(x) on the principal Riemann sheet. 

A way of moving these cuts is the following. This is very important for 

applications, because such a phenomenon is encountered in the s,,mmation of the 

expression for the height of the center of gravity of the bubble (see Eq. (2)). 
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This fact is reported at length in a Mission Research Corporation report. (An 

Accurate Early Time Solution for a Rising Fireball Model, by C. Longmlre, G. 

McCartor, N. Carron, and F. Fajen, Report Number DNA 2967T, October, 1972 

(MRC-R- 20). ) 

The scheme for moving the cut is very simple. Consider the even powers and 

odd powers separately, that is, consider 

F+(x 2) 1 = y (f(x) + f(-x)) , 

(11) 
= i xF_(x 2) ~ (f(x) - f(-x)) 

The location of the branch points is not changed, so that the singularities of F+ 

and F are at x 2 = (l±i) 2 = ± 2i. Now the zeros and poles of the Pade approximants 

to F+ and F (whose numerators and denominators are now polynomials in x 2) are 

located on the imaginary axes, or, in the x-plane, along the dashed rays shown in 

Figure I. Now the Pade approximants converge for all real positive x. 

Actual numerical data will be presented in Section III. 

C. Pade approximants for functions of two variables. 

J. S. R. Chisholm of the University of Kent, Canterbury, has proposed the 

following extension of the defining equation (Eq. (4)) for functions of two vari- 

ables: 

N N N N 
f(x,y) = ~ ~ a x~y~/ ~ ~ b TxayT . (12) 

~=0 V=0 0=0 r=0 

As before, we may choose bOO = i. The a's and b's are defined by requiring that 

when the right hand side of Eq. (12) is expanded in a power series in x and y the 

result agrees with the power series expansion of f(x,y) through order 2N, and that 

in order 2N + i, the average of the coefficients of xYy 2N+I-Y, y = 1,2,...,N, also 

agree. 
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This verbally complex algorithm is best explained with an example: 

c20x2 2 f(x,y) = COO + Cl0X + c01Y + + CllXY + c02Y 

+ c30 x3 + c21x2y + Cl2XY 2 + c03 y3 + ... , 

a00 + al0x + a01Y + allxY 

I + bl0X + b01Y + bllXY (13) 

Cross multiplying and equating the coefficients of various powers of x and y yields 

00 
coefficient of x y : COO = a00 , 

i 0 
x y : c00bl0 + Cl0 ffi al0 , 

01 
x y : coobo1 + CO1 ffi ao1 , 

1 1  
x y : c00bll + Cl0b01 +c01bl0 + ell = all , 

20 
x y : Cl0bl0 + c20 = 0 , 

(xly 2 + x2y 1):  c20bo1 + Cl lb lo  + Cllbo1 + c02blo = 0 . (14) 

These linear equations for the a's and b's generally have one and only one solution. 

The following properties of these approximants make them the most desirable 

of the possible approximants to functions of two variables: 

i) The NIN Pade approximant to f(x)g(y) is the product of the ordinary N/N 

Pade approximants to f(x) and g(y) separately. 

2) The N/N Pade approximant to f(x) + g(y) is the sum of the ordinary N/N 

Pade approximants to f(x) and g(y) separately. 

D. Movement of cuts in functions of two variables. 

Exactly the same tricks for moving cuts as that used in Section B for func- 

tions of one variable may be used for functions of two variables. In analogy with 

Eq. (ii), one defines 
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F++(x2,y 2) = 

yF+_(x2,y 2) 

x.F_+(x2,y 2) 

xyF__(x2, t 2) 

1 
(f(x,y) + f(-x,y) + f(x,-y) + f(-x,-y)) , 

1 
(f(x,y) + f(-x,y) - f(x,-y) - f(-x,-y)) , 

1 
= ~ (f(x,y) - f(-x,y) + f(x,-y) - f(-x,-y), , 

1 
= ~ (f(x,y) - f(-x,y) - f(x,-y) + f(-x,-y)) (15) 

It is important to note that the structure of the expansion of x and y (see 

Eq. (2)) suggests such a decomposition of these functions, because a general two 

variable expansion has 1 term of order 0, 2 terms of order i, 3 terms of order 2, 

and so on, whereas these expansions of Eq. (2) have missing terms. Taking every 

other term, two expansions with the correct structure is found. When we come to 

the calculation of torus time in Section II, we will find that taking every other 

term results in Pade approximants whose poles and zeros are not awkwardly located. 

E. Other generalizations of Pade Approximants. 

One sees that Eq. (4) is nothing more or less than 

Df - N = 0(x re+n) (16) 

This is a linear equation in f. One might also consider 

pf2 + Qf + R = 0(x m+n+£+l) , (17) 

where m, n, and £ are the degrees of polynomials P, Q, R, respectively. Such 

approximants are called quadratic Pade approximants. But, more important, we might 

consider 

-- {df~4 + R = 0(x m+n+£+l) (18) P d2f + Q kdxl 
dx 2 

because, if the power series expansion of f is known, so is the power series expan- 

sion of d2f/dx 2, (df/dx) 4, etc., so that Eq. (18) results in linear equations for 

the coefficients in the polynomials P, Q, R. 

III. The Bubble Problem. 

A. Approximations based on partial differential equations. 

From the series of Eq. (2), we obviously know x(t, cos 8) and 
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y(t, cos 0), where x and y are the Cartesian coordinates of the point 0 at time t 

(remember that 0 refers to the initial configuration). 

Had we great faith in Newtonian mechanics, we might very well start out a 

system of partial differential equations 

~2x+ = 0 

~t 2 "'" 

(19) 

a 2  + = 0 

~t 2 "'" 

But what forces act on these particles? First, gravity 

~2 x 

~t2 + ... = 0 , 

(20) 

1 ~2y + Y = 0 
~t 2 "'" , 

where y is the vertical axis. What else? The pressure acts perpendicularly to the 

boundary, and since the magnitude of the pressure ought to be proportional to y, 

and the direction cosines of a vector perpendicular to the boundary are +3y/~0, 

- a x / a O ,  

a2x ~X7 

+ + ~Y ~ 0  + """ 0 
- -  = 

at 2 

(21) 

i - ~x 32y + Y ~y ~+ = 0 
~t 2 "'" 

There are properties that such a set of equations ought to have. It ought to be 

i) Galilean invariant, that is, invariant against y = y' + vt, and 

2) invariant against transformations of any sort on the variable 0, 

0 = 0 ( 0 ' )  (22) 

The pressure term is not Galilean invariant, but it can be made invariant against 

transformations of 0 by writing instead 
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B2x By/De 
--+ + ay 
@t 2 Bx 2 

1 B x/ I  e 

~- ay Bx 2 

+ ... = 0 

+ ... = 0 

(23) 

To make these Galilean invariant, we need to impose the incompressibility as a con- 

straint. According to d'Alembert's principle, 

~t 2 + ... Bt2 + ... , 
(24) 

and a constraint V(x,y) = constant has to be handled by writing 

~Bv ~v 
~x dx + By dy , (25) 

where I is a Lagrange multiplier, and subtracting Figs. (24) and (25), so that 

32x + ~BV 
Bt 2 ~x + ... = 0 

'B'2~ + I_~-~V + ... = 0 
Bt 2 By 

(26) 

A consideration too long to be included here shows that the constraint (volume = 

constant) results i n  

B2x De De 
+ A + ay 

Bx 2 Bx 2 

1 ~8 ~8 @2y + ~ _ ~ - ay 

+ ... = 0 , 

+ ... = 0 

(27) 

It is very important that ~ is a function of t only. The Galilean invariance is 

now obvious because when y = y' + vt, the vt term is absorbed in the Lagrange multi- 

plier, so that I' = I + art. 

What other types of terms might one consider adding? "Drag" terms propor- 

2 
tional to v I , where v± is the component of the velocity perpendicular to the 

2 
boundary, or Vll , and perpendicular to the boundary, might be added. Such terms 

are Galilean invariant because we interpret v I to be measured relative to the 
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fluid at rest at infinity. 

Our final equations are 

32x + A-~ ay -~+ 8vz 2 -~+ YVll -~ _ _  .38 + 28 38 2 3e 

~t 2 
= 0  

3x 3x 3x @x 

i 20 - 30 - 30 2 30 = 0 
~2y + ~ - ~-~ ~Y --D Bv 2 ~ -  YVl l  --D 
@t 2 

, (28) 

We determine e, B, and y so that the expansion of the solutions of Eq. (28) in a 

double power series in t and cos e agrees with the correct expansions (see Eq. (2)) 

to as high an order as possible. With 

3 
2 ' 

33 
= - I-~ ' (29 )  

15 y =---~ , 

agreement is attained through order t 6 (all powers of cos e relevant to order t6). 

2 2 
The choice of the exponents in vA and Vll are also dictated by requiring this 

agreement, and the power series expansion of A(t) is also fixed. 

Some figures for the rise of the bubble as calculated in this manner are 

shown in Appendix I (figures 1-6). Torus time comes quite early, at t = 1.095 or 

SO, 

It is extremely difficult to generalize this idea to higher powers of t, and 

we have not done that. But by abandoning the invariance requirements and going back 

to 

.... 3 2e 38 _ 33 2 38 _ 38 A 32x +~y-~+~-~ By~v~ -~ c-~ 
Bt 2 

@x @x 3x 3x 
i 3 38 - 38 33 2 @e 38 

3t 2 

= 0 , 

= 0 , 

(30) 

we can fix the coefficients in the polynomials A, B, and C so that agreement 
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through any order in t is attained. The danger is that the polynomial A will 

develop zeros, but in some orders and at some places on the boundary this danger is 

not realized. Torus time tends to come later as the degree of approximation (that 

is, as the order of the polynomials A, B, C) is increased, perhaps at t = 1.2 or so, 

as figure 7 exhibited in Appendix I shows. 

B. Estimate of torus time by means of ordinary Pade approxlmants. 

The thickness 2£ of the bubble is, of course, the difference in y at the top 

of the bubble and y at the bottom, that is 

2£ = y(t 2, O) - y(t2,~) (31) 

Explicitly, 

£ = 1 - 1.875 x i0 -I t 4 - 5.438 x 10 -2 t 8 - 1.362 x 10 -2 t 12 

+ ... (32) 

These coefficients are tabulated to a large number of figures in Table I. The [i/i], 

[2/2], [3/3],... Pade approxlmnts yield £ = 0.767 for t = i in good agreement with 

the results obtained from the partial differential equation approach. In general, 

they all give £ = 0 (Torus time) at t = 1.2 or so, also in good agreement with the 

partial differential equation approach (see Table II). 

Now, it could be that the zero in £ is a zero located on a cut crossing the 

real t axis (see the location of poles and zeros in Table II). To study this possi- 

bility, we move the cut as discussed in section II.B, that is we write 

£ = F+ (t 8) + t 4 F_ (t 8) (33) 

Various Pade approxlmants to F+ and F_ at various times are shown in Table III. In 

general, they suggest £ = 0 at some time later than t -- 1.2, perhaps t = 1.4 or even 

1.5. They also appear to have no undesirable zeros or poles, and the approximations 

seem to change quite smoothly as the order of approximation increases. 

Really, although it may appear in section II that an enormous number of 

terms have been calculated in the expansions for y(t2,e = O) or y(t2,8 = ~), we 

are reduced in Eq. (33) to functions whose expansion coefficients are every fourth 

term in the original expansion, and 36/4 = 9 so that only a [4/5] or [5/4] Pade 

approximant may be studied. More work is needed to generate accurate series 
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expansions to higher order; such work will require much computer time on fast com- 

puters. 

The partial differential equation method is applicable to the rise of a 

cylindrical bubble, which develops a cap after torus time; that is, it looks like 

at torus time. According to Gary McCartor, the series expansions needed for the 

cylindrical bubble are 

4 i 7 28 73 
r = i + t (~ - ~ cos 2~) + t6(- ~ cos ~ + ~-~ cos 3~) 

1 i01 35 
8 = ~ + t 2 (sin ~) + t4(- ~ sin 2~) + t6(- i--6~ sin ~ + ~ sin 3~) 

1 t 2 7 t 6 h = ~ + ~ + ... , x = r sin ~ , y = r cos ~ + h . (34) 
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Figure Captions 

Figures i-6. Shape of the bubble at various times. The time and distance scales 

are set by the initial rise during which the bubble behaves as though it were rigid 

i t 2 rising llke ~ and by the initial radius r = i, respectively, h(t) is the height 

l 1 
of the point x = 0, y = ~ y(0, t) + ~ y(~,t). 

Figure 7. Thickness of the bubble on axis of symmetry vs time. These are best 

estimates from calculations based on Eq. (30). 
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t = 1.09 

h(t) = 1.493 



157 

-I 

-2 
-I 

\ ,\ 

I 
,,i # 

I 
( ir 

2 
x 

Figure 5 

t = 1.094 

h(t) = 1.527 
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Figure 6 

t = 1.095 

h ( t )  - 1 .530  
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F i g u r e  7 

T h i c k n e s s  o f  t h e  b u b b l e  on a x i s  o f  symmetry  
vs  t i m e .  These  a r e  b e s t  e s t i m a t e s  f r o m  
c a l c u l a t i o n s  b a s e d  on Eq. ( 3 0 ) .  
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Table I 

Accurate Coefficients for Eq. (30). The order in 

which these are to be read is apparent from Eq. (30). 

1.0 +00 

-5.438456632653055-02 

5.11511872461845 -03 

1.012249732304565-02 

-9.952368481864343-04 

-5.506523714786576-03 

-2.120294683714934-04 

3.926479535644956-03 

8.953856051941572-04 

-3.09449704894324 -03 

-1.875 -01 

-1.362446243532089-02 

1.151623084926745-02 

4.804358858144425-03 

-4.791099632885595-03 

-3.513584047019944-03 

2.692173228391798-03 

3.128540287264697-03 

-1.579142125257331-03 
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Table II 

Pade Approximants formed from Series of Eq. (30). 

Half the thickness of the bubble on the axis of 

symmetry is tabulated. 

t 3/4 4/5 7/8 8/9 

0.8 0.91347018 0.91347002 0.91347014 0.91347014 

i. 0 0. 76469807 0. 76420450 0. 76424654 0. 76685838 

i.i 0.61689611 0.61116700 0.59803286 0.66098736 

1.2 0.22093630 0.18768951 < 0 0.37334144 

1.3 <0 < 0 < 0 

Location (in t 4 plane) of the zeros and poles 

of the 8/9 Pade Approxlmant 

Roots of Denominator 

0.75606093 ± i 0.64871509 

0.92782164 ± i 0.71306521 

1.3703819 ± i 0.78104964 

2.9883484 

14.699468 

-139.05115 

Roots of Numerator 

0.75563195 ± i 0.64727296 

0.92546957 ± i 0.70349188 

1.3489190 ± i 0.73761275 

2.3641068 

9,7374222 
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Table III 

Pade Approximants to F+ (see Eq. (33)) 

t 011 i12 213 3/4 415 

0.8 0.99095828 0.99128592 0.99106605 0.99106605 0.99106605 

1.0 0.94842056 0.94792005 0.95637556 0.95636353 0.95665642 

i.i 0.89559338 0.89475280 0.92423556 0.92412823 0.92994608 

1.2 0.81047544 0.80916506 0.86835050 0.86804717 0.89101745 

1.3 0.69269749 0.69092524 0.77897013 0.77845245 0.82240395 

1.4 0.55475379 0.55272305 0.6602585 0.65956997 0.72114121 

1.5 0.41774289 0.41575710 0.52715917 0.52639470 0.59747092 

t 110 2 /1  3/2 413 514 

0.8 0.99087578 0.99109132 0.99106605 0.99106609 0.99106605 

1.0 0.94561543 0.94039026 0.95619283 0.95616968 0.95664655 

1.1 0.88342185 0.87617212 0.92087900 0.92069538 0.92905483 

1.2 0.76615632 0.75356214 0.84900828 0.84847787 0.88127337 

1.3 0.55636838 0.53389113 0.71094835 0.70988429 0.78092139 

1.4 0.19739852 0.15790015 0.46976099 0.46784701 0.59723664 

1.5 -0.39381695 -0.46139448 0.07036295 0.06707928 0.28885363 

Roots of Numerator (4/5) 

0.1077 ± i 1.053 

0.1410 ± i 1.975 

Roots of Numerator (5/4) 

0.1205 ± i 1.048 

0.2617 ± i 1.938 

35.761 

Roots of Denominator (4/5) 

0.1053 ± i 1.054 

0.0982 ± i 1.991 

-36.932 

Roots of Denominator (5/4) 

0.1183 ± i 1.050 

0.2240 ± i 1.962 
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Table III (continued) 

Pad~ Approximants to F (see Eq. (30)) 

t 1/1 212 313 414 

0.8 -0.18950191 -0.18944294 -0.18944316 -0.18944316 

1.0 -0.19488349 -0.18943211 -0.19004561 -0.18978128 

i.i -0.19788633 -0.18046367 -0.18498208 -0.18047145 

1.2 -0.20014065 -0.17087111 -0.18157475 -0.16572802 

1.3 -0.20157703 -0.16549046 -0.18068947 -0.15482310 

1.4 -0.20242239 -0.16291690 -0.18070385 -0.14917041 

1.5 -0.20290741 -0.16165605 -0.18088619 -0.14641120 

Roots of Numerator (4/4) 

0.09447 ± i 1.125 

-0.3624 ± i 2.801 

Roots of Denominator (4/4) 

-0.09945 ± i 2.511 

0.09920 ~ i 1.104 
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I Introduction 

A body travelling at a speed greater than the speed of sound in a compressible 

fluid will, in general, be preceded by a shock-wave. This "bow-shock" wave sepa- 

rates the fluid region into two parts: the fluid ahead of the oncoming body is 

unaware of the body's presence, while the fluid between the shock and the body is 

affected quite strongly. The problem of finding the shape of the bow-shock, the 

details of the fluid motion and the resulting pressures and forces on the body is 

usually referred to as the supersonic blunt-body problem. Interest in the problem 

has been strong for the past thirty years; currently the major application is to the 

design of spacecraft. 

While the most general problem involves viscous, unsteady, chemical non- 

equilibrium, heat and mass transfer and other considerations, experience has shown 

that the solution of the "classical" blunt-body problem, involving the steady flow 

of a thermally and calorically perfect compressible fluid with viscous effects 

neglected, is adequate for many purposes. 

The results presented in this paper employ an inverse method of solution to this 

problem. In an inverse method, the shape of the detached bow-wave is prescribed; the 

values of the flow variables immediately downstream of the bow shock can be specified 

in terms of the free-stream parameters by means of the Rankine-Hugoniot (shock jump) 

relations. These values serve as the initial conditions for the system of nonlinear 

partial differential equations that characterize the flow. The shape of the body 

which produces the given shock-wave is determined as part of the solution. The 

solution of the so-called direct problem, where the body shape and free-stream 

conditions are specified initially, requires, in general, an iterative computation. 

Because exact initial conditions can be specified only at the shock-wave, rather than 

at the body surface, all solutions to the blunt-body problem are, of necessity, 

indirect. 

Numerical solutions to the inverse blunt-body problem have met with a good 

measure of success, especially for axisymmetric flow problems. These solutions 

usually involve a finite-difference, marching-from-the-shock technique. However, 

many instabilities plague these numerical solutions, caused both by the particular 

numerical procedure employed as well as by the mathematical nature of the inverse 

problem. An important example in the latter category arises because the flow behind 

any detached shock must be at least partially subsonic. In the subsonic region the 

governing equations are elliptic in character. An elliptic system of equations with 

initial (Cauchy) data is known to be mathematically ill-posed. 1 Slight errors in the 
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initial data can lead to unacceptably large deviations in the solution. 

An alternate, semi-analytic, solution to the blunt-body problem can be obtained 

via a series expansion method. Here the solution for any flow variable is assumed 

to be a (multiple) Taylor series in the space coordinates with undetermined co- 

efficients. If the shape of the bow shock is given by an analytic relation, values 

of the flow variables and arbitrarily many derivatives of these variables running 

along the shock may be found at once from the Rankine-Hugoniot relations. The 

system of differential equations governing the motion may then be manipulated to 

yield arbitrarily many derivatives of the variables normal to the shock in terms of 

the derivatives along the shock. 

It is interesting to note that the first attempts to solve the blunt-body 

problem, in the late forties and early fifties, employed this series approach 2'3'4 

Their results were inconclusive, however, partly because they computed their series 

by hand and thus were able to extract only five or six terms. Moreover, Van Dyke 5 

discovered, in 1958, that a limit line appears in the upstream analytic continuation 

of the flow, that is, "ahead" of the shock. This limit line, while only a "mathema- 

tical fiction", will very frequently lie closer to the shock than does the body and 

will therefore determine the "radius" of convergence of the series expansion. A 

successful solution based on the series expansion method must therefore incorporate 

an analytic continuation procedure. Van Tuyl 6 suggested the use of Pad~ fractions 

for this purpose. This idea was used by Moran 7 along with automated computation of 

the series coefficients to produce successful blunt-body solutions for problems with 

axial symmetry. 

In this paper we report on an extension of Moran's work to non-symmetric 

configurations. We also discuss two related problems which, because of their 

relative simplicity, allow one to elucidate certain features of the analytic struc- 

ture of their solutions. We make use of a battery of techniques, including Domb- 

Sykes plots 8, Euler transformations and "series completion"; collectively these 

procedures have come to be known as "the method of Van Dyke" in acknowledgement of 

his pioneering work in this field. 9'I0. 

II The Taylor-Maccoll Conical Flow Solution 

The problem of axially symmetric supersonic flow past a right circular cone was 

solved numerically by Taylor and Maccoll in 193311. More refined numerical solutions 

have been produced by Kopa112, Simms 13'14, and others. Provided the free-stream Mach 

number is high enough to permit an attached shock which is a coaxial circular cone, 

the flow quantities will depend only on one space coordinate, the azimuthal angle e. 

Though the analogy is by no means complete, the Taylor-Maccoll problem may be consid- 

ered to be a model "one-dimensional blunt-body problem" and, as such, merits study 

before proceeding to more general cases. 

The problem is formulated in spherical polar coordinates with the axis of the 

cone corresponding to the origin of the azimuthal angle e. Let w,u denote the 
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velocity components in the r and @ directions, respectively. 

the solution of the 2nd order nonlinear equation: 

(aZ-uZ) ~d--~ + w +a z w + ~-~ cot @ = 0 

They are determined as 

( z )  

where 
dw u = -- 

de 

and 

a 2 + ~ (u 2 + w 2) = const = 7-i V 2 (2) 
2 2 'm 

follows from the conservation of total enthalpy. Here a=a(@) is the local speed of 

sound, y the ratio of specific heats, and V the velocity the fluid would attain if 
m 

allowed to expand adiabatically into a vacuum. The solid cone surface is character- 

ized by zero normal velocity: 

u ( e  c)  = o .  

Thus if w e = W(Oc) is specified, the equations may be integrated numerically from 

the solid cone until a value of 8 is attained where the velocity components are 

compatible with the Rankine-Hugoniot relations. Thus this problem, like the more 

general blunt-body problem, requires the satisfaction of mixed boundary conditions. 

The solution of the direct problem, i.e. free-stream Mach number and solid cone 

angle initially specified, will require an iterative computation• 

In a later paper Maccol112 sought a power series solution for the flow. He 

assumed, in effect, a solution of the form 

w = Z w .s  a (3 )  
j = o  8 

where 8=6-8 and substituted this expansion in (i). Choosing as his dimensionless 
c 

dependent variable the quantity W/Vm, he obtained the series coefficients through 

O(E5). These coefficients are in general functions of the three parameters ec,Y, 

and Wc/V m. In Maccoll's formulation the parameter y first appears in the 0(84 ) term, 

as a factor i/(y-l), thus indicating a very strong dependence on the ratio of 

specific heats, particularly for polyatomic gases. 

In a recent paper, this author 16 has shown, via a small modification to 

Maccoll's procedure, that the apparent strong dependence on y is spurious. Choosing 

the cone velocity w as the reference, one obtains 
c 

w = 1-82 + cot @ - + 84 
w 7-- c 

c 

+ cot Oc ( ~ + 40 M2 + 4 cot2@c) g5 
20 ~ c 



168 

_~6 [ 2 + 19 cotZ6 + 5 cot48 
30 [ 3 -4- c c 

+ M2 ( 14 + 89 c°t2 ~ c  -~ 3 c ) + M4c (~--+ 4(7-1I] +''" (4) 

through order ~6. Here it is seen that y appears only in the E6 term and moreover 

that the effect on this coefficient of large changes in y (from a physical viewpoint) 

will be quite minor. This suggests that the ratio w/w may be sensibly independent 
c 

of 7 and hence the nature of the gas. Exact solutions of (I) appear to bear out this 

conjecture. Indeed the greatest change in the normalized velocity ratio at any point 

in the flow when 7 is increased from 1.4 to 5/3 (i.e. diatomic versus monatomic gas) 

is about one part in 3000. It seems fair to say that a type of "quasi-similarity" 

has been demonstrated and that the only sensible dependence on 7 derives from the 

shock boundary condition. 

The exact solutions used for these comparisons were obtained from high-order 

series solutions recast as rational fractions. Machine computation using the series 

approach is at least as efficient as standard finite difference methods for this 

problem. These series solutions can be made to yield information concerning the 

nature and location of important singularities through the use of Domb-Sykes plots. 

This graphical extension of the familiar D'Alembert ratio test is based on the 

following observation: If 

~ k(So ± s) ~ a # 0,i .... 
f(s) = Z anen = [ k(e0 + E) ~ log (eQ + S) ~ = 0,i,.. (5a) 

n= 0 - _ . 

then 

a-~-n = $ ~ [ I _ i+___~ ] 

an_ I g0 n (5b) 

and hence that the ratios of series coefficients, when plotted versus i/n, will lie 

on a straight line. Thus if we make such a plot using the coefficients in any series 

and if the points ultimately tend towards a straight-line asymptote, we can infer 

that the closest singularity is of type (5a). The plot yields estimates of the 

nature ~ and location g0 of this singularity. We show such a plot formed from the 

coefficients in (3)in Fig.l. A singularity corresponding to a 3/2-power branch point 

at g0 = -.156 is indicated. Here the singularity closest to the surface of the solid 

cone lies "buried within" the cone to a "depth" of about 8.9 degrees. In this case 

the shock lies closer to the cone surface than does the branch-point. Hence for 

@ = 40 o and M c = 2, the shock will be within the series expansion from the solid 
c 

cone. Very often this is not true, as for a slender cone at relatively low free- 

stream Mach number. The oscillations in the plot of Figure i are caused primarily by 

another singularity lying somewhere ahead of the shock. Information about this 

secondary singularity can be obtained after first mapping away the one at g0 by means 
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of the Euler transformation 

= ~ ( 6 )  
~-~o 

A Domb-Sykes plot of the series for w (~) reveals that the outer discontinuity is 

also a 3/2-power branch-point. This appears to be true in general; the two 

singular lines correspond to the envelopes of right-and left-running characteristics 

where these both exist. 

Using the information that we have obtained about the nature of the important 

singularities of w and the virtual lack of dependence on y, it is instructive to 

examine the accuracy of a low-order Pad@ approximant formed from the first few series 

coefficients. Since we know that the important singularities of the Taylor-Maccoll 

solution are 3/2-power branch-points, a simple modification can result in an improved 

approximation. The series solution (4) is raised to the 2/3 power; the new power 

series is then cast as a rational fraction; finally, the rational fraction is raised 

to the 3/2 power to recover an approximation to w. Thus each zero of the rational 

fraction is converted to a branch-point of the proper kind. Using only four terms of 

(4), we form 

c) (w2/3)} 3/2 
(?) 

where the mnemonic notation [ 3/1] signifies a rational fraction with three zeroes 

and one pole. w3 and w~ are coefficients from (4). Figure 2 compares the approxim- 

ate normalized profiles obtained from (7) with exact results for a cone of 5 o half- 

angle at both a high and a low surface Mach number. The greatest error is about 4% 

for the low Mach number case. For M = i0, on the other hand, the maximum error is 
c 

less than 1%. Two other case comparisons, for e = 400 , likewise show agreement to 
c 

within I percent. (See reference 16). 

The relatively large error for the small Mach-number and cone-angle case can be 

explained, and, in principle, removed by a method of "partial series completion". In 

(4) we observe that each coefficient w. contains a term 
J 

(_i) j+l cotJ-2ec 

j (8) 

for j12,3... From the Taylor series expansion 

log(l+~ cot @c) _ ~ = Z (-l)J+ic°tJ-2@c E j (9) 

cotZ@ cot @ j=2 j 
c c 

one may infer the presence of a logarithmic singularity at ~ = -tan @ . 
c 

Assuming that all the coefficients in the series contain terms of the form (8), the 
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series may be partially completed and the logarithmic singularity removed through 

the use of (9). For @ <<i the logarithmic singularity is only slightly further from 
c 

the surface than the 3/2-power branch point. Because it is stronger than the branch 

point, however~ it dominates the leading portion of the series (4). 

Thus by using various bits of information extracted from the leading terms in a 

series solution to the Taylor-Maccoll problem, we are able to case light on the 

analytic structure of the full solution and obtain a simple and accurate approxima- 

tion. It should be emphasised that (7) is a rational approximation derived from 

analytic principles, rather than a curve fit and should therefore by systematically 

improved when carried to higher order. 

III Hypersonic Flows with Parabolic Shocks 

Perhaps the simplest class of genuine blunt-body flows can be generated by a 

parabolic or paraboloidal shock wave placed symmetrically in a uniform free-stream of 

infinite Mach number. Because the free-stream Mach lines have zero slope, the para- 

bolic and paraboloidal shocks have the correct asymptotic behaviour far downstream 

and thus they may be reasonable approximations to the shock waves produced by actual 

bodies during the early stages of atmospheric re-entry. Because of its relative 

simplicity, the axisymmetric paraboloidal shock-wave especially, is often used as a 

test case for numerical solutions. 

While a series solution to the blunt-body problem in two space dimensions will, 

in general, require double Taylor series expansions for the dependent variables, this 

was not found to be necessary for the present cases. By using orthogonal coordinates 

it becomes possible to obtain results for each variable as a single Taylor series in 

the coordinate normal to the shock, whose coefficients may be computed recursively as 

exact functions of the other space coordinate. Thus, there is no drastic loss of 

accuracy away from the stagnation region; if it happens that the dependent variables 

are well-behaved functions throughout the entire shock layer, it should be possible 

to obtain an effectively exact solution to the entire problem rather than simply a 

good solution near the nose of the body. We will present results valid far down- 

stream in the axisymmetric use. For plane flow, on the other hand, a limit line 

appears within the shock layer, suggesting the presence of an imbedded shock. 

The problem may be formulated in orthogonal coordinates as in Fig. 3. For 

purposes of this section the angle of attack in the figure is always equal to zero. 

Taking the shock nose radius as unity, we introduce parabolic coordinates according 

to 

x = ½[i + ~2_ (i + s)2] 
(io) 

r = l~l (i+~)- 

The shock is seen to correspond to ~ = O. Dimensionless variables may be formed 

using D~,V~, and p V~ 2 as the reference quantities. The field equations become 
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continuity: 

- momentum: 

{ gV(l+~s) [g2+(~l+E)2] ½pu }g 

+{ ~V(I+vg) [.~:~+(l+g) 2] 2PV }e = 0 

(lla) 

g - momentum: 

~v 2 ( ( l + g ) u )  : 0 (lib) uu~ - +v u~+ +Tp~ 
{2+ (il+s) 2 ~2+ (l+g) 2 

entropy: 

(l+e)u2 +u (v~+ ~v )+Tpe 0 (llc) 
vv ~2+(1+E)2 ~2+(1+~)2 = 

uS+vT = 0 (lid) 

where the additional variables T,S, 

ucts and hence reduce the number of 

T = i/p 

S = pp~ - ypp~ 

T = PPE - YPPs" 

V:0 and i correspond to plane and axisymmetric flows, respectively. 

and T have been introduced to remove cubic prod- 

nested D0-1oops in the computer program. Here 

( l lc)  

(11f) 

(lZg) 

It can be shown 

that the system of equations (ii) can be satisfied by assuming each independent vari- 

able to be an infinite series in g where coefficients are polynomials in X=I/(I+~2). 

The density series, for example, is of the form 

J i k (12) 
p(s ,X)  = ~ Z s X 

j=0 k=0 Pjk 

and thus the solution will be in the form of a triangular array of coefficients. 

When expansions of the form (12) are substituted in (ii), the differential 

equations reduce to algebraic relations where the unknown coefficients at each stage 

are computed reeursively as sums of quadratic products of coefficients of lower 

order. A series solution for the stream function is developed from the series for p 

and u by term-by-term integration of 

¢E : ~(l+~)[~2+(1+~)2] ½pu (1B) 

Additional details of the solution procedure may be found in reference 17. Power 

series solutions for both the plane and axisymmetric cases with y=l.4 were found to 

0(@ 24) in about i minute of computer time for each case on the IBM 360/67. The co- 

efficients for the first few orders may be recognised as rational numbers from their 

repeating decimals. For plane flow, we obtain for the stream function 

£ = i + 6~ + (45-35X)S 2 + [BB0-(lB55/B)X + 140X 2] ~ 

+ [4965/2 - (19055/4) X + (24175/9)X 2 - 455X 3] g 4 (14) 

+ [186h8 - (92153/2)X + (681137/18)X 2 - (I304347/108)X3+IBI6X 4] g 5+ .... 

Similar expressions for the axisymmetric case were calculated to 0(e 3 ) by Van Dyke 18 
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and a fourth term was added by Moran 7. 

The results which follow were computed with [12/12] Pad6 approximants formed 

from the 24th order solution. The degree of convergence of the Pad@ table is excell- 

ent; the body (given by the streamline @=0) can be found to I0 decimal-place 

accuracy throughout the subsonic region for the axisymmetric case. The Pad@ table 

converges less well for the plane case. The stagnation point could be located to 

only 8 place accuracy. She convergence drops off dramatically as one enters the 

supersonic region, however, for this case. As an additional check, the pressure at 

the stagnation point, computed as a [ 12/12] approximant, agrees with the exact value 

to ii and 7 places respectively for the two cases. Two separate methods were used 

to locate the body from the solution for @. The first method involves factoring the 

ntunerator of the Pad@ approximant for @(~;X) and identifying the body as the leading 

negative real zero for various constant values of X. The body may also be found by 

reverting the series 

@(c;X) = @o(X) + @~(X)C + @ 2 ( X ) C 2 + . . .  ( 1 5 )  

to obtain 

c(@;X) = c~(×)(@-%) + c2(×)(@_@o)2+... (16) 

and then recasting (16) as a Pad6 fraction with @=0. The accuracy of a solution of 

given order is about the same for the two methods. The series reversion method, 

however, is more efficient computationally and is more convenient for drawing 

streamlines. 

Some significant features of the results are shown in Figures (4) through (7). 

Figure (k) shows the body shape and flow-field which support a parabolic shock for 

Y=7/5. The body shape was found from the expansion for the stream function, as were 

the typical streamlines in the figure. Note that the streamline @=-.I lies "within" 

the body, i.e. in the analytic continuation of the shock-layer flow field. 

The upstream limit line, corresponding to an envelope of characteristics as in 

the Taylor-Maccoll problem, and the continuation of the streamline @=.3 ahead of the 

shock are latent in the analytic solution which is, of course, "unaware" that the 

shock represents a physical discontinuity. As expected, the upstream limit line lies 

closer to the shock than does the body which indicates that the various series 

expansions will be divergent in the vicinity of the body. Also shown is the sonic 

line and its upstream and downstream analytic continuations. On this line the local 

Mach number, given as 

M2 ~ 2 (17) 
= y~ ~-i 

assumes the value unity. For the plane case, the sonic line is clearly a closed 

curve, touching the upstream limit line on the line of symmetry. The surprising 

feature of Figure (4) is the presence of a limit line within the shock layer. On 

this line the density and other flow variables have infinite gradients. Unlike the 
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upstream limit line, which exists only in a fictitious flow region, this limit line 

lies within the physically important region between the bow-shock and the body. Thus, 

in order to find that portion of the body lying behind the downstream limit line, it 

will be necessary to permit discontinuities of the field variables in the shock layer. 

A secondary, or embedded, shock might be inserted just upstream of the limit line and 

the solution could then be continued from the downstream side of this shock. It is 

doubtful, however, that such a modification is unique. It appears clear that no two- 

dimensional body can be found that will possess a parabolic bow-shock and have a flow 

field free of other discontinuities. 

Figure 5 shows the body pressure distribution for the plane case. The circles 

in both figures 4 and 5 represent a numerical solution obtain with the m~rching-from- 

the-shock technique of Lomax and Inouye 19. Their solution is graphically indistin, 

guishable from the high order Pad@ - fraction results. The approximate results using 

only [ 2/2] fractions are indicated as dashed lines. This reasonably good agreement 

indicates that the earliest attempts to solve the blunt-body problem, using only 

hand-calculated series, might have been successful had the knowledge of the upstream 

limiting envelope existed at the time. Similar results for the axisymmetric case 17 

show even closer agreement. 

The two limit lines shown in Figure 4 were found through the use of Domb-Sykes 

plots. Three such plots for the density series, all indicating upstream singulari- 

ties, appear in Figure 6. For ~=0, corresponding to the line of symmetry, the plot 

clearly indicates a square-root singularity at the critical value E* = .120. For + 

~=0.5, the asymptote has been drawn so as to indicate a square-root though other 

exponents are surely possible. Because of the uncertainty latent in any graphical 

extrapolation, the results of the third plot, for ~=~, are particularly reassuring. 

Here the singularity exponent, obtained as a best-fit to the plotted points, is 

e=-1.88. It was later determined that the system of equations (ii) simplifies 

considerably in the limit ~ and that the reduced system possesses an exact local 

solution near a singular point ~* of the form 

P ~ (S-S*) -3/(3-Y) 

For Y=7/5, the exponent is exactly equal to -15/8=-1.875. The inner limit line was 

found using Domb-Sykes plots after suitable Euler transformations were performed. 

The axisymmetric case, unlike the two-dimensional flow, appears to possess a 

completely analytic shock layer. It is therefore possible to compute the body shape 

to great distances downstream. Figure 7 shows the afterbody computed to 200 shock 

nose radii downstream. It is in substantial agreement with Yakura's 20 asymptotic 

solution 
1 

rb ( x ~ (lS) --=1.392 ~--/ 
Rs s 

which he obtained by modifying the blast-wave analogy to account for the entropy 
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layer. A similar hut higher-order numerical solution of Syehev 21 is also shown. Our 

computed afterbody agrees well with Sychev's although the convergence of the approx- 

imants is less good past x/R s = i00. This loss of convergence is related to our use 

of parabolic coordinates; our body degenerates to the branch cut ~=-i in the down- 

stream limit. 

IV. Plane blunt-body flow at arbitrary Mach number and angle of attack 

The method of Section III has been substantially generalized to treat both 

finite free-stream Mach numbers as well as arbitrary angles of incidence. While 

numerical methods have been largely successful in the treatment of symmetric config- 

urations, it is only quite recently that, with the use of more general finite 

difference techniques and immensely more powerful computers, that promising solutions 

to the more general asymmetric problems have been solved even to engineering 
22 

accuracy While the method of the present section treats only two-dimensional 

configurations, it produces solutions of very great accuracy that can serve as useful 

test-ease comparisons for finite difference solutions. Moreover, no numerical 

solution appears to be of sufficient accuracy to adequately resolve the question of 

whether the maximum-entropy streamline wets the body surface in asymmetric flows. 

In this section we show that the stagnation streamline is displaced from the maximum 

entropy streamline by a relatively small, but by no means negligible amount. We 

also continue the discussion of limit lines and the domain of validity of the inverse 

method of solution. 
23 

Following Van Dyke and Gordon, the bow-shock is described by 

y2 = 2R x - Bx 2. (19) 
s 

Here B, the so-called shock bluntness, is a measure of the eccentricity. B=0 repre- 

sents a parabola and B>I, an oblate ellipse, for example. 

An orthogonal coordinate system with the shock corresponding to E=0 is introdu- 

ced by setting 
= I 

x ~ {i - [(i-S~2)(l + 2Be + Be2)] ½} (20a) 

and y = ~(I + E) (2Oh) 

which is a generalization of the transformation (i0) of the last section. 

The initial conditions are specified at the shock via the Rankine-Hugoniot 

relations: 
(y+l)M~ sin20 

(y-i)M~ sin20+2 

2 
y--~ sin29 - (y+l)yML 

o [ o , [ ( e ) l - -  

p [ o , [ ( e )  ] = 

u [ o ~ [ ( e )  ] = c o s e  

v [ o , [ ( e ) ]  = ( y - 1 ) M ~  s i n 2 e + 2  

(V+I)M~ s i n 2 e  
sinS. 

(21a) 

(21b) 

(21e) 

(21d) 
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Here the uniform free stream of Mach number M is inclined at an angle ~ to the x- 

axis as in Figure 3 and @ is given by 

cosO = [ cos~ + (I-B[2) ½ sins (22) 

[ l+(l-S)~ 2 ] ½ 

Equations (21) are the initial conditions for the gasdynamic equations which, in 

(g,~) coordinates, become 

R(2)([) $[C[ 2 (  + (l+e) 2] (0u)[ + C~ pu lI (23a) 

+R(1)(~) {[C~2+(l+~) 2] (~v)E+(l+E)~v} =0, 

R(2)(~) {tuu~ + Tp~I leo + (l+~)~l - c~v ~ } 
(23b) 

+ R(1)(~) {~j cO + (l+~)~l + (l+~) uv} : o, 

(23c) 

+R(1)(~) ~ [ ~ .  + ~p~ [cC + (l+~)~l - (l+~) u~}= o, 

and 
R(2)([) [u(pp[- yp~)] + R(1)(e)[v(pp~- Yp%)I : 0. (23d) 

Here 

C=I-B, 

R(1)(~) = [1+B(2~+~2)] ½ 

a n d  ~(2)(~) = (l_B~2)½. 

While in the cases treated in the preceding section, it was possible to express 

the solution for each dependent variable as a single power series in g with coeffic- 

ients which are exact functions of [, in the present more general case, this was not 

practical. Here the series coefficients involve the parameters M ,B, and ~ as well 

as y. Moreover~ the dependence on ~ is sufficiently complex that, in the interest of 

computational efficiency, the single series must be abandoned in favour of a double 

power series solution. Thus, for the density, we assume an expansion of the form 

p(e,~) = Z [ sJ[ k (24) 
j =0 k=0 P j k  

with similar expressions for the other dependent variables. By inserting these 

expansions in the system (23), performing the series multiplications, and equating 

coefficients of terms of like order in both g and ~, recurrence relations may be 

derived for the elements 0jk,Pjk, etc. Additional details may be found in reference 

24. 

It is a feature of the recurrence procedure that the number of terms in ~ which 

may be found exactly at each stage decreases as the order of g is increased. Thus if 
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the computation is started by expanding the Rankine-Hugoniot relations (21) as a 

series in ~ up to a given order N, there will exist only a sufficient number of 

relations to determine the first-order coefficients in g to order N-I in ~. Simil- 

arly, at the next stage, only terms up to 0(s2~ N-2) may be found. The final result 

will be, therefore, a triangular array of coefficients, for each variable, which 

includes all elements of total order, that is the sum of the exponents of E and ~, 

~N. 

A formal extension of the Pads concept to cases involving two independent 

variables may be effected by grouping all terms of the same total order together. 

Consider f(E,~) to be a typical dependent variable and form 

~ ~ k 

f(£,~) = Z ~ f.. si~ j = ~ Z fk_j,jgk-J~ j 

i=0 j=0 ~J k:0 j=0 (25) 

= ~ sk ~ fk-j 
k=0 j=0 'J 

which is a single power series in £ whose coefficients are polynomials in (t/s), 

Standard methods for treating single series, e.g. Wynn's epsilon algorithm 25, may 

now be used. Note that this method is fully compatible with the triangular arrays 

produced by the recurrence formulas. Various other techniques for treating multiple 

power series have been devised by Chisholm 26 and his group. 

The double power series, as derived, are expansions about the shock apex. 

Clearly, any other point on the shock could serve just as well. The maximum-entropy 

point, where the shock is normal to ~he free-stream, is perhaps a more logical choice 

and might result in more uniform convergence in the results which follow. 

The body produced by a given shock is located by first finding the stagnation 

point, which is a saddle-point of the stream function. Starting with an initial 

guess, the desired condition u=v=0 may be approached via a Newton iteration: 

(vu~ - uv~) i (26a) 
Ei+ I = C. + l 

(usv ~ - veu~) i 

(uv s - vus) i 
~i+l = ~i + (26b) 

(uev ~ - v u~) i 

Note that the partial derivatives need not he evaluated numerically but may be foundby 

term-by-term differentiation of the power series which is then recast as a Pad@ 

fraction. The body shape can then be found by finding points which lie on the 

streamline passing through the stagnation point. Other streamlines as well as the 

sonic lines can be found using Newton iteration. 

Typical results are shown in Figures 8 and 9. Various total orders of solution 

are shown for each case. A parabolic shock is set at i0 ° incidence to a free-stream 

with M = 2 in Figure 8. The 30th order solution, computed with [15/15] approximants 

and the procedure of (25), is sensibly exact. Notice that the maximum entropy 
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streamline passes below the streamline that wets the body surface. Since the flow- 

field is rotational, the stagnation streamline does not intercept the body exactly at 

right angles. It exhibits a small characteristic bending away from the maximum 

entropy streamline. In Figure 9, a flat-faced /~-to-i ellipse is set at i0 ° inci- 

dence with infinite free-stream Mach number. Here the maximum entropy streamline 

passes above the one that wets the body. The solution here also is fully converged 

by 30th order. A high order solution is required here to locate the sonic lines 

correctly. It was decided to plot the location of the limit lines for this case to 

see whether the failure of the low order solutions can be better understood. As 

before, Domb-Sykes plots are used, coupled with suitable Euler transformations when 

necessary. The limit lines have been mapped out in Figure i0. The limit lines 

appear both within the supersonic position of the shock layer and also in the 

"fictitious" upstream analytic continuation of the flow. The line opposite the 

shock exhibits a square-root singularity (6=½) as do the limit lines within the 

shock layer. These are augmented by singular lines with 6=-0.43 placed roughly 

symmetrically in the analytic continuation. Lines AB&AG can be traced back to point 

A on the shock. Here the shock slope = i0 °, the free-stream angle of attack. At 

this point the shock becomes a Mach line and hence it is plausible that it should be 

a singular point. Note how close the limit lines come to the sonic lines which 

explains the need for high order solutions in these regions. Because of the close 

proximity of the limit lines, obtaining a starting line for a method of character- 

istic solution would appear to be a practical impossibility for this case. 

Various other features of this asymmetric blunt-body solution are explored in 

reference 24. Cases up to 30 o angle-of-attack have been treated. The displacement 

of the maximum entropy streamline from the stagnation streamline appears to increase 

somewhat faster than linearly with angle of attack. It is also increased as the Mach 

number is lowered. The body pressure distribution can also be found to good accuracy. 

The series expansion method would app@ar to merit further study as a possible 

alternative to finite-difference techniques for the asymmetric problem. Three 

dimensional solutions are also possible where the substantial algebra required to 

derive the recurrence relations for the series coefficients might be alleviated 

through the use of a symbol manipulation language such as FORMAC. 
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Domb-Sykes plot for radial velocity series coefficients 
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Radial velocity component (ec=5° , Y=7/5) 

Blunt-body coordinate system. 

Flow field, parabolic shock, M =~, Y=7/5. 

Body pressure distribution, parabolic shock. 

Domb-Sykes plot of density series, upstream limit line~ 

parabolic shock. 

Afterbody coordinates, paraboloidal shock, Y=7/5. 

Flow field, parabolic shock, M =2, ~=i0 °, 7=7/5, ooo N=20, 

o D O N=26, --N=30, --- Maximum entropy streamline. 

Flow field, elliptic shock, M =~, ~=I0 °, Y=7/5. 

Location of limit lines for the flow field of Figure 9- 
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WAVE FRONT EXPANSIONS AND PADE' APPROXIMANTS FOR 

TRANSIENT WAVES IN LINEAR DISPERSIVE MEDIA 

G. T u r c h e t t i ,  F. M a i n a r d i  

I s t i t u t o  di F i s i c a ,  U n i v e r 6 i t &  di Bo logna ,  I t a l y  
Gruppo N s z i o n a l e  per  la  F i s i c a  Matemat ica  del  C.N.R.  

1. INTRODUCTION 

The wave p r o p a g a t i o n  i n  l i n e a r  d i s p e r s i v e  media has d i f f e r e n t  and 

i n t e r e s t i n g  a s p e c t s ,  Many o f  them conce rn  p l ane  waves p r o p a g a t i n g  i n  

a homogeneous h a l f  space s u b j e c t e d  t o  a known i n p u t  c o n d i t i o n  a t  t h e  

f r e e  s u r f a c e .  The r e l a t e d  boundaPy -va lue  prob lem i s  c o n v e n i e n t l y  t r e a ~  

ed by the  Lap lace  t r a n s f o r m .  The t r a n s f o r m  s o l u t i o n  i s  e a s i l y  d e t e r -  

minedw however i t s  i n v e P s l o n  i s  a ve r y  d i f f i c u l t  t a sk  excep t  f o r  some 

s p e c i a l  cases .  U s u a l l y  s h o r t  and long t ime  a p p r o x i m a t i o n s  are  dePived  

i n  t he  l i t e P a t u r e .  

In  t h i s  no te  we r e v i e w  a s imp le  method wh ich  enab les  us,  u s i n g  the  

Pad~ A p p r o x i m a n t s ,  t o  compute t he  s o l u t i o n s  o f  most t P a n s l e n t  wave p rob  

lems i n  s p a c e - t i m e  domains o f  p h y s i c a l  i n t e r e s t .  Our a n a l y s i s  i s  based 

on r e c e n t  i n v e s t i g a t i o n s  about  v i s c o e l a s t i c  and t h e r m o e l a s t i c  waves I1 ,  

21, w i t h  a p a r t i c u l a r  emphasis on t he  numer i ca l  a s p e c t s .  

The p l ane  o f  t he  work i s  t h e  F o l l o w i n g .  

In  S e c t i o n s  2. and 3. we cons ideP t he  wave p r o p a g a t i o n  i n  l i n e a r  

v i s c o e l a s t i c  and t h e r m o e l a s t i c  media,  wh ich  leads  t o  t he  same t r a n s f o r m  

e q u a t i o n .  

In  S e c t i o n  4, we d e r i v e  a wave F ron t  e x p a n s i o n  wh ich  pPov ides  a 

s e r i e s  s o l u t i o n ,  un iFoPmly  c o n v e r g e n t  i n  any s p a c e - t i m e  domain.  

In  S e c t i o n  5. we d i s c u s s  t he  numer i ca l  p r o p e r t i e s  o f  t h i s  s o l u t i o n  

and i n t r o d u c e  the  d iagona l  Pad~ App rox iman ts  i n  o rde r  t o  a c c e l e r a t e  the  

conve rgence .  

In  S e c t i o n  6. we p r e s e n t  some r e s u l t s  wh i ch  c e n f i r m  t he  e f f i c i e n c y  

o f  t he  method. 



190 

2. VISCOELASTIC WAVES 

The basic equations of the dynamic theory of l inear v i scoe las t i c i t y  

are, in the unidimenslonal case ( see  fo r  example 13,4,51) :  

~__ a 2 
ax o ( x , t ) :  e a-~T u ( x , t )  ( 2 . 1 )  

~ ( x , t )  : {so +--ds(t)~}at o i l ,  t) (2.2) 
a 

~ ( x , t )  =T~xU(X,t)  ( 2 . 3 )  

O v ( x , t )  =~ -~u (x , t )  (2 .4)  

where o is the stress, ~ the st ra int  u the displacement, v the 

par t ic le  ve loc i ty ,  O the density• J(t)  the creep compliance• 

J o =  J(0+)  • and ~ deno t e s  t he  Riemann c o n v o l u t i o n .  

Denoting with R (response variable) any one of the variables a • 

• u • v , we consider the problem of determining R = R(x,t)  with the 

i n i t i a l  conditions: 

R(x,t) = ~  R(~•t)= 0 for t = 0 (2.5) 

and the  boundary  c o n d i t i o n s :  

R ( x , t )  = t o ( t )  f o r  x = 0 
( 2 . 6 )  

R(x,t)-~O as x - * ~  

Taking the  Laplace  t r a n s f o r m  of  e q u a t i o n s  ( 2 . 1 ) - ( 2 . 5 )  we o b t a i n  

f o r  the  t r a n s f o r m  r e s p o n s e  R ( x , s )  t he  f o l l o w i n g  d i f f e r e n t i a l  e q u a t i o n :  

2 

{ a~__ 2 ( s ) }  ~ ( x • s ) :O  (2 .7 )  
Ox 2 

where 

2 s 2 
(s) = - 5  

e 

In i2.8) c=(e 
1 

c reep  ~ i t )  = S--~ 

Account i ng 

~(×,s) =~o 

0 +~(s)] 
1 

Jo) -~ and 

d--Jit ) dt 

f o r  ( 2 , 6 )  the  s o l u t i o n  of  ( 2 . 7 )  r e a d s :  

(s) e~p[-× ~(~)] 

(2.8) 

~ ( s )  i s  t he  Laplace  t r a n s f o r m  of  the  r a t e  o f  

( 2 , 9 )  

with  # ( s ) ~ O  fo r  a r g ( s ) = O  131. 
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In most cases ~ ( t )  is  an e n t i r e  f u n c t i o n  o f  exponen t ia l  type so 

t h a t  ~ ( s )  is  a n a l y t i c  and van l sh in9  at  i n f i n i t y t  as known from the  

t rans fo rm theory  161. This occurs f o r  v i s c o e l a s t i c  models whose melaxa 
B 

t l o n  spectrum is s t r i c t l y  p o s i t i v e .  Then F (s)  is  an a n a l y t i c  f u n c t i o n  

in the s -p lane  cu t  a long a f i n i t e  domain o f  the negat i ve  rea l  ax i s  I l l .  

A r e l e v a n t  model of  v i s c o e l a s t i c i t y  is the  Standard L inear  S o l i d  

(SLS) f o r  which:  

~ ( t ) = ( 1 - a ) e  -at =* ~ ( s ) = ( Z - a ) / ( s + a )  (2.10) 

where 1 and 1/a rep resen t  the  r e l a x a t i o n  t ime and the  r e t a r d a t i o n  

t ime r e s p e c t i v e l y  131. For a=O we recover  the  Maxwell S o l i d ,  f o r  

which the wave equat ion  reduces to  the Ste legraph equa t ion  w 171. 

3. THERMOELASTIC WAVES 

A genera I i zed dynamic theo ry  o f  I i near thermoe Ias t  i c i t y  has been 

in t roduced  by severa l  au thors  (see fop example 1 8 , 9 e l O e l l l ) i n  o rder  t o  

e l i m i n a t e  the paradoxe p resen t  in the  c l a s s i c a l  theorye o f  an i n f i n i t e  

v e l o c i t y  f o r  thermal and mechanical d i s tu rbances .  In the  un id imens iona l  

case the bas ic  equat ions are,  in a conven ien t  non-dimensional  form, 1101 

a a2 
a~ s (x,t)=a- ~ u(~,t) (3.1) 

S ( x , t )  = E ( x , t )  - O ( x , t )  ( 3 . 2 )  

E ( x , t )  = ~  U ( x , t )  ( 3 . 3 )  

~2 ~ 02 
c~x--- ~ O ( x , t ) - ~ - ~  O ( x , t ) -  # = ~ [ ~  E ( x , t ) + ~  ~ E ( x , t ) ]  ( 3 .4 )  

where $ i s  the  s t r e s s  e E the  s t ra inw U the  displacemente 0 the  

tempera tu re t  ~ the t h e r m o e l a s t i c  coup l i ng  cons tan t  and ~ the  r e l a x a -  

t i o n  cons tan t  in t roduced  to  account fop the  a c c e l e r a t i o n  of  t h e h e a t  f l u x .  

We cons ider  the problem of  de te rm in in9  the tempera ture  O : O ( x e t )  

and the  s t r a i n  E : E ( x e t )  w i th  the  i n i t i a l  c o n d i t i o n s :  

0 (x , t )  = ~  O(x, t )  : E(x , t )  : ~  E(x , t )  : 0 for t :  0 (3.S) 

and the  boundary c o n d i t i o n s :  
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O(x,t)=Oo(t) , E ( x , t ) = E o ( t )  fop  x = O  
(3 .6)  O(x , t )~0  , E(x , t )~O as x~®  

Taking the Laplace transforms of equations ( 3 . 1 ) -  (3 .5)  we obtain 

for the transform responses g(x,s) • ~(x•s) two coupled d i f ferent ia l  

equations. However i t  is possible to uncouple the problem 121 

O = g + O E = E + E 

where g-+ 

a2 

In (3 ,8)  

4 

• E ' -  sa t  i s l y  t he  f o l  I owing equat  ions : 

- 1 =:+(x,s>=0 

/ ~ ( s ) ,  /~2(s)_ are the algebraic roots of the equation: 

by s e t t i n g  

(3.7) 

(3.8)  

2 2 s 4 - s  u ~  + v = O  ( 3 . 9 )  

with u = l + / ~ ( l + ~ )  + ( l + ~ ) / s •  v = ~ + l / s ,  

I t  is not d i f f i c u l t  to prove that: 

~ ( s )  = s2 ;TEl + v+(s)] (S. 10) 

I 1 

where c + = { [ i + ~ ( I + ~ ) ± 7 ] / 2 }  -~ with 7= { [ 1 + ~ ( 1 + ~ ) ] 2 - 4 f l }  ~ and 

~r-(s) are functions analytic and vanishing at i n f i n i t y .  We remark that 

H+2 ~#2_ for Y ~ -  Y . 

Accountln 9, for (3.6) the part ia l  solutions read: 

+ + (s) t exp[- ,+(s ) ]  ~ t ( x • s )  = {aTl(s)  No(S) + aT2(s) to x 

+ + (s)] exp I- ~+(s)] ~-(x,s) = {a~1(s) No(S) + a~2(s) ~o x 
( 3 .11 )  

where a l k ( S )  ( i , k = l • 2 )  ape known f u n c t i o n s  and ~ + ( s )  ~ 0  f o r  

a r g ( s ) = O .  The a i k ( S )  p rove  to  be a n a l y t i c  a t  i n f i n i t y  w i t h  a non- 

v a n i s h i n g  va lue •  and t he  ~+ (s )  a re  a n a l y t i c  in  t h e  s - p l a n e  cu t  a long  

t h e  n e g a t i v e  r ea l  a x i s  between s = - l / ~  and s =  0 121 . 
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4. WAVE FRONT EXPANSIONS 

In the p rev ious  Sect ions  we have shown t ha t  the  problem of  t r a n -  

s i e n t  waves can be reduced to  the  i n v e r s i o n  of  the  Laplace t ransform~ 

R ( x , s ) = ? ( s )  a(s)  e x p { - X ~ S ~ + ~ ( s ~ ½ }  (4 .1 )  
C - 

where ~ (s )  is  the  t rans form of  a g iven input  f u n c t i o n  f ( t ) ,  and 

a ( s ) ,  ~ ( s )  are some a n a l y t i c  f u n c t i o n s  r e g u l a r  a t  i n f i n i t y ,  w i th  

a ( ~ )  ~ 0 ,  ~ ( ~ )  =0  ( a ( s ) = l  f o r  the  v i s c o e l a s t i c  case) .  

The i n v e r s i o n  o f  (4 ,1 )  is s imp le r  when ~ ( s ) =  1 .  The cor respond ing  

f u n c t i o n ,  denoted by G ( x , t )  

R ( x , t )  f o r  any input  f ( t )  

R ( x , t ) = f ( t )  ~ G ( x , t )  

The wave p r o p e r t i e s  of  

(Green 's  f u n c t i o n ) ,  enables us to  o b t a i n  

by the Riemann c o n v o l u t i o n :  

(4 .2)  

R(xwt) appear from the l i m i t  as s - ~  of  

G ( x , s ) ,  which p rov ides  e x p l i c i t l y  the  d i s c o n t i n u i t y  and the  v e l o c i t y  o f  

the wave f r o n t  and the space damping, From the p rev ious  c o n s i d e r a t i o n s  

we can expand a(s )  and ~ (s)  

a(s)=ao+az/S+a2/s 2 + . . . ,  ao~O 

?(s) = ~l/s + ~2/s 2 + . . .  

so t h a t  the l i m i t  of  G(x , s )  as s - ~ i s :  

w i th  

G ( X , S ) ~  a o e x p [ -  x s - kx l  
C 

in Laueent s e r i e s ,  accord ing  to :  

(4 .3 )  

(4 .4 )  

(4.s) 

Z= ?'--J (4 .6)  
2c 

Then f o r  t ~ ( x / c )  + we get :  

R ( x t t ) =  f ( t  - x / c )  a 0 exp r [ "  k X ]  ( 4 , 7 )  

from which we recogn ize  t h a t  c is  the  wave f r o n t  v e l o c i t y ,  k the  

space damping and f (O +) a o e x p [ - A c t ]  the  jump of  R at  the  wave f r o n t .  

Of course the  decay c o n d i t i o n  k >0  is  insured in our cases. 

By account ing  foe the f i r s t  few teems in 1 /s  o f  R(x+s) which 

can be a n a l y t i c a l l y  computed, sho r t  t ime approx imat ionsaee u s u a l l y  

de r i ved .  On the  o the r  hand long t ime approx imat ions  are deduced from 

(4 .1 )  e i t h e r  by the  saddle p o i n t  method or by the  l i m i t  as s ~ 0 .  
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Here we sketch a pecursive method to generate the whole expansion 

of G(xrs) in powers of 1/s, which provides a wave f r on t  expansion of 

the Green°s func t ion ,  un i formly convergent For any x ,  For t h i s  purpose 

we put: 

r X S ]  ^ G(x,s)=expt-- c G(x,s) (4.8) 

where G(x,s),  which is analytic at i n f i n i t y  u is to be expanded in 

Laurent series according to: 

G(x,s) = Wo(X) + ~ Wk(X)/S k ( 4 . 9 )  
k=l 

To determine the func t ions  

t i a l  equat ion s a t i s f i e d  by G(x,s) , namely, after" (2 .7 ) ,  

(4.8), 

I aa 2so s'-~2 1 - ~ - ~ - c  2~(s) ~(x,s)=0 

which is subjected to the boundary condition O(Ows)=a(s). Inserting 

the expansions (4.3), (4.4), (4.9) into equation (4.10) and col lect ing 

l ike powers of s e we obtain the following recursive system of Fi rst  

order di f f e r e n t i  a I equat ions: 

Wk(X) ( k = O , l , . . . )  we c o n s i d e r  t he  d i f f e r e n -  

(2 .8 ) ,  (4 .1 ) ,  

44.10) 

d ~1 
T~ Wo +~ Wo=0 

d 2 k d ~1 c 1 x -  
"~x wk +~c wk=~ ~ wk-1 - ~ c  ~=. 'q)J+l wk-J 

(4.11) 

with i n i t i a l  cond i t ions  Wk(O)=a k ( k=O,1 ,2  . . . .  ) .  

to prove tha t  the Wk(X) can be expressed by: 

k h 
( k = O , 1 , 2 , . . . )  Wk(X)=exp(-  ;~x) ~ Akh 

h=O 

where Z i s  g i v e n  by ( 4 . 6 )  and t h e  Akh 

r e l a t i o n s :  

I t  is not d i f f i c u l t  

44.12) 

are def ined by the recurs ive 

i Ak 0 = a k 

Akh = ~ (Ak-l,h+l 
1 k-h+l  

( 4 . 1 3 )  

~$+] Ak-J,h-l. 
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From the i n t e g r a l  t rans fo rm theory  161, we know t h a t  the i n f i n i t e  s e r i e s  

in (4 .9 )  can be i nve r ted  term by term in any F i n i t e  i n t e r v a l  o f  x ,  

p r o v i d i n g  an e n t i r e  Funct ion of  exponent ia l  t ype .  Then, by i n v e r t i n g  

( 4 . 8 ) ,  ( 4 . 9 ) ,  we ob ta in  the f o l l o w i n  9 r e p r e s e n t a t i o n  f o r  the Greents Fun_c 

tion: 

oo 

G(x,t)=Wo(X) 6 ( t - x / c ) +  E Wk(X) ( t - x / c )  k - l -  " k=l (k-  I ) !  ( 4 . 1 4 )  

where (~(.) denotes the Dirac d is t r ibu t ion .  

In (4.14) the f i r s t  term isolates the discont inui ty associated with 

the propagat ing wave Front ,  in  agreement w i th  (4.7), wh i le  the se r i es  of  

powers o f  ~ = t - x /c  g which i s uni f o rm ly  convergent For any x , accounts 

For the response fol lowin 9 the wave Front. 

We notice that, when the input function F(t) is ent i re of expo- 

nential t ype,  a simi lap wave Front expansion can be c a r r i e d  out d i r e c t l y  

on R ( x , t )  , avo id ing  the convo lu t i on  procedure ( 4 . 2 ) .  In t h i s  case, 

expanding ~ (s )  in Laurent s e r i e s  

7(s) = Fo/s+ /s2+ . . .  (4.15) 

and per fo rming  the Cauchy product of  the se r i es  (4 .15 ) ,  ( 4 . 3 ) ,  we can 

write: 

7(s) a(s)= Co/S+ 01/s2+... (4.16) 

This enables us by p rev ious  cons ide ra t i ons  to  ob ta in  the s e r i e s  represenn 

r a t i o n  of  R ( x , t ) :  

oo 

R ( x , t ) =  ~ Wk(X) 'k!X/C)2 (4.17) 
k=O 

where the Wk(X) ( k = 0 , 1 , . . . )  are g iven by (4 .12 ) ,  (4 .13)  w i th  

Wk(O) = Ako= 0 k • 

5. PADE' APPROXIMANTS AND NUMERICAL CONSIDERATIONS 

The se r i es  s o l u t i o n s  (4 .14 ) ,  (4 .17)  are easy to handle For numerical 

computat ions s ince they are obta ined in a recu res l ve  way. A good e s t i -  

mate of  the er ra ta  made when we t r unca te  the s e r i e s ,  i s  p r a c t i c a l l y  

imposs lb le ,  but the numerical convergence is  expected to slow down by 

i nc reas ing  of  ~ ( t ime elapsed From the wave Front )  w i th  a ra te  d e p e ~  
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i n9 on x • 

Since  the  r e s u l t  i s  an e n t i r e  f u n c t i o n  in  4 oP e x p o n e n t i a l  t ype  

which must be bounded a t  i n f i n i t y ,  we a re  Paced w i t h  t h e  same d i f f i c u l t y  

as in  t he  e v a l u a t i o n  o? e x p ( -  4 )  us in9  i t s  T a y l o r  e x p a n s i o n  w when 4 

i s  l a r g e .  

In h i s  c l a s s i c a l  work 1121, Pad~ i n t r o d u c e d  a sequence o f  r a t i o n a l  

a p p r o x i m a t i o n s ,  h e n c e f o r t h  c a l l e d  Pad~ Approx iman ts  (PA),  which p roved  

t o  a c c e l e r a t e  t he  convergence o f  t he  T a y l o r  s e r i e s  fop  t he  e x p o n e n t i a l  

f u n c t i o n .  

No genera l  convergence theorems are  a v a i l a b l e  fop  t h e  PA excep t  in  

t h e  case o f  S t i e l t j e s  f u n c t i o n s  (see fop  example 1131), however the  co~ 

ve rgence  in  measure has been r e c e n t l y  p roved  f o r  meromorphic  f u n c t i o n s  

114 ,1SI .  

In  our  case we a p p l y  t he  PA t o  t he  s e r i e s  s o l u t i o n s  in  4 , s i n c e  

t h e  a n a l y t i c  p r o p e r t i e s  i n s u r e  t h e i r  conver9ence in  measure,  and a s t r o n 9  

improvement o f  t he  numer ica l  convergence is  expec ted  as f o r  t he  exponen-  

t i a l  F u n c t l o n .  

In the  a c t u a l  c o m p u t a t i o n s  f rom a compar ison  o f  t h e  p a r t i a l  sums o f  

t h e  s e r i e s  w i t h  t h e  c o r r e s p o n d i n g  PA we have remarked t h a t  t h e  convergence 

Pate i s  much b e t t e r  fop  t h e  PA when 4 i s  l a r g e .  Beyond a c r i t i c a l  v a l u e  

4= 4 o t he  numer i ca l  convergence o f  t he  s e r i e s  is  l o s t  no m a t t e r  how many 

terms a re  computed (we work w i t h  a f i x e d  number o f  d i 9 i t s ! )  w h i l e  t h e  

convergence o f  t he  PA is  s t i l l  s a t i s f a c t o r y  f o r  ~ > 4 o u n t i l  a match in9  

w i t h  t he  Ion 9 t i m e  s o l u t i o n  i s  o b t a i n e d .  

6. RESULTS 

A c c o r d i n  9 t o  t he  method deve loped  i n  S e c t i o n s  4 . ,  5 . ,  we have p e r -  

?ormed a numer ica l  su rvey  o£ the  models i n t r o d u c e d  in  S e c t i o n s  2 , ,  3. 

The r e s u l t s  a re  summarized in  seve ra l  t a b l e s  and f i g u r e s .  For con-  

ven ience  we have f i x e d  the  t ime  t = T  so t h a t  t he  range oP the  

v a r i a b l e s  x, 4 i s  f i n i t e  ( O ~ x ~ c T ,  O ~ 4 ~ T ) .  

For the  v i s c o e l a s t i c  waves i n  a S tandard  L i n e a r  S o l i d  (see ( 2 . 1 0 )  

we have computed: 
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( i )  t he  Green 's  Func t i on  

and the  s o l u t i o n s  o f  the  f o l l o w i n g  boundary v a l u e  prob lems:  

( i i )  R . ( t ) = l  

( i l l )  

( i v )  Ro(t )  = e - a t  

( v )  R o ( t )  = e "at cos ~ t  

~ ( ) 1 
0 S = ~  

S 

Ro(S) = i I 

s[i + ~ ( s ) ]  ~ 
i 

Ro(s )  = s + ~  

R o ( s ) -  s + ~  
(s + a ) 2 +  2 

In Tab les  I - Vl we compare the s e r i e s  and P.A. s o l u t i o n s  For the  

above boundary va lue  problems;  in  o rde r  t o  check the  method we do a l s o  

quote the long t ime  and c o n v o l u t i o n  ( 4 . 2 )  r e s u l t s .  

when 

R ( x , t ) = e _ t / 2  i o { ~ ( t  2 _ c  ~ ) : } 2  

and a t  l e a s t  a f i v e  d i g i t s  accuracy  i s  Found f o r  

than (12/12]  P.A, 

An even more s t r i n g e n t  check For the  P.A. i s  ach ieved  For ( i i i )  

a = O .  In t h i s  case the  exac t  s o l u t i o n  i s  e x p l i c i t l y  known 171: 

T ~ SO us ing  no more 

In F igu res  1-4 the  responses t o  ( i i )  and ( i i i )  a re  p l o t t e d  f o r  

seve ra l  va l ues  o f  T .  

For the  t h e r m o e l a s t i c  waves the  F o l l o w i n g  boundary va lue  i s  

cons ide red :  

g o ( t )  = 0 ~o (S )  = 0 

I E o ( t ) = 1  g o ( S ) = ~  
S 

In Tab les  VII ,  VIII we e x h i b i t  the  thermal  and e l a s t i c  responses by 

compar ing the  s e r i e s ,  P.A. ( s e p a r a t e l y  computed on the  expans ion  o£ 

g+ # g -  , E + , E-) and Ion9 t ime  1161 s o l u t i o n s .  In F igu res  5 -  8 some 

r e l e v a n t  r e s u l t s  a re  shown. 

From the  p r e v i o u s  examples we can i n f e r  t h a t  the  Padd method 

p l a y s  a c r u c i a l  r o l e  i f  we are i n t e r e s t e d  in  a 91obal s o l u t i o n  o f  

t r a n s i e n t  wave prob lems.  
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APPENDIX 

The response o f  a S .L ,S .  to  any i npu t  t o ( t )  i s  g i v e n  by 

R (x,t)  = I  err(s) go(S) d s (A.i) 

where f(S):S~-c--" ~ Vl+~(s~ , w i t h  ~ (s) g iven  by (2.10). 

For l a rge  v a l u e s  o f  t we approx ima te  (A .1 )  us ing  t he  sadd le  

point method. FOr the Greenes ~unction No(S) : I and the standard 

r e s u l t  reads 

R(x, t )= [2  = t l f " (~ ) l ]  -½ e - t l f ' ( ~ ) l  (A.2) 

where s i s  d e f i n e d  by f ' ( ~ ) = O  and must be computed n u m e r i c a l l y ,  

For i npu t s  ( i i )  and ( i i i )  Ro (s )  has a po le  a t  t he  o r i g i n  and t he  

most r e l e v a n t  c o n t r i b u t i o n  t o  (A .1 )  i s  o b t a i n e d  when the  sadd le  p o i n t i s  

c l o s e  to  s = O . R e p l a c i n  9 f ( s )  by ~ ( s ) =  f ' ( O ) s +  f " ( O ) s  2 t he  sadd le  

p o i n t  c o n t r i b u t i o n  can be a n a l y t i c a l l y  e v a l u a t e d  and we ge t :  

( i i )  R (x,t)  -~ ½ Erfc[~W] (A.3) 

( i i i )  R(x,t) -~ x V~ Erfc[W~ (A.4) 
x + c t  V-a 

whereW=-(1-  x ) - ( 2  1 , , : a .  x )-½ 
c t  Ca a c t  2 ~a 

For t h e r m o e l a s t i c  waves long t ime  a p p r o x i m a t i o n s  have been d e r i v e d  

in  1161 by t a k i n g  the  l i m i t  as s ~ O  of  the  t r a n s f o r m  s o l u t i o n s  and 

read:  

- ~ Er f  [Z] (A .5 )  O ( x , t )  = 1 +~ 

Err  [Z]  (A .6 )  E ( x , t )  = 1 - 1 + 

where Z = x  V1 +e/?- ¢-t • 
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TABLE CAPTIONS 

The meaning o f  t he  symbols used in  the  Tab les  i s  the  F o l l o w i n g :  

X : d i s t a n c e  

TAU : time elapsed from the wave Front ; = t -  x/c 

SERIES : resul ts  of the par t ia l  sums (NS) of the series solut ion 

in  ~ , 

NS : number of terms in the par t ia l  sums 

ERS : estimated accuracy of the series solut ion defined by II_,(NS-I)I 
(NS) 

PADE : d iagona l  Pad6 approximants [NP/NP] computed on the 

series solut ion in ~ , 

order of P.A..  Remark that NP : 

ERP:  

CONVOLUTION: 

LONG TIME : 

NS=2NP+I 
I L.NP..- 1/NP- I ]  I 

estimated accuracy of P.A. d e f i n e d  by I I "  [NP/NP] I 

c o n v o l u t i o n  of the input with the Green's funct ion computed 

piecewise using the series when ERS ~ 10 -5 , the P.A. when 

ERS > 10 -5 ~ ERP and the long time approximation when 

ERP> 10 -5 . A Gauss quadrature with NO p o i n t s  is used. 

long t ime  a p p r o x i m a t i o n  o f  the  s o l u t i o n  (see Append ix ) .  

Viscoelast ic waves in a S.L.S. with a=.S for  T=30 .  

Table I Input ( i ) ,  Green's funct ion 

Tab le  II Inpu t  ( i i )  

Tab le  III Inpu t  ( i i i )  

Tab le  IV Inpu t  ( i v )  w i t h  a = ,1 , NG=8 

Tab le  V Inpu t  ( v )  w i t h  a : . I  , ~:T0, NG=20 

Thermal and s t ra in  waves with ~ = .03, ~=1.3 

(NS~21, NP~IO), 

Table VI Thermal  waves for  E o ( t ) = l  go( t )=O 

Table  VII E l a s t i c  waves f o r  Eo( t  ) =  1 g o ( t )  = 0 

for T = 5 
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TABLE I : S,LS(i ) T=30  

TAU 

0 

2 

4 

6 

8 

I0  

12 

14 

16 

18 

20 

22 

24 

26 

28 

SERIES 

2.593E-03 

2,123E-02 

5.042E-02 

7.222E-02 

7.451 E-02 

5.973 E-02 

3. 867E-02 

2.059E-02 

9.012E-03 

2.021E-02 

1.579E+00 

3.145E+02 

2.965E+04 

1,516E+06 

3.984E+07 

NS 

1 

10 

12 

16 

19 

23 

25 

25 

25 

25 

25 

25 

25 

25 

25 

ERS PADE t 

.0 2.593E-03 

1.E-06 2.124E-02 

7,E-06 5.042E-02 

9.E-06 7.221E-02 

1,E-05 7.451E-02 

4.E-07 5.973E-02 

3.E-05 3.867E-02 

6.E-03 2,062E-02 

2.E-02 9.124E-03 

3.E+O0 3.344E-03 

2.E+O0 1.003E-03 

2.E+O0 2.400E-04 

2.E+O0 4.911E-05 

2.E+O0 4.538E-06 

2.E+O0 2.080E-07 

NP ERP LONG TIME 

0 .0 - -  

4 3.E-04 2.28E-02 

5 6. E-05 5.30E-02 

7 3 • E-06 7.53 E-02 

9 3 • E-08 7.74E-02 

11 3 .E-10 6.19E-02 

12 1 .  E - I  0 4 .  OOE-02 

12 I .  E-O8 2.13E-02 

12 6. E-07 9.45E-03 

12 I .E -06  3,47E-03 

12 1.E-05 1.04E-03 

12 3. E-04 2.50E-04 

12 1,E-O1 4.57E-05 

12 2.E-01 5,75E-06 

12 7,E-01 3.85E-07 



TAU 

0 

3 

6 

9 

12 

15 

18 

21 

24 

27 

SER I ES 

5,531E-04 

5,893E-02 

2. 767E-01 

5. 858E-01 

8. 288E-01 

9,497E-01 

1.  001 E+O0 

2,117 E+01 

2,788E+04 

9,103 E+06 

NS 

1 

11 

16 

2o 

25 

2.5 

25 

z5 

25 

25 
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TABLE fl : SLS(~ii) T = 3 0  

£RS PADE' NP ERP 

.0 5,531E-04 0 .0 

9. E-06 5,893 E-02 5 2. E-05 

4.E-06 2. 767E-01 7 5,E-07 

8. E-06 5.858£-01 9 6. E-08 

4. E-06 8.288E-01 12 3. E-11 

2. £-04 9.497E-01 12 2. E-09 

4. E-02 9,898E-01 12 5. E-09 

2. E+O0 9.986E-01 12 7.E-08 

2. £+00 9.999E-01 12 7, E-07 

2, £+00 1, O00E+O0 12 I ,  E-06 

LONG TI ME 

9.27E-02 

2,49 E-Ol 

5,22E-01 

8,16E-01 

9,72E-01 

9 • 99 E-01 

I • OOE+O0 

I ,  OOE+O0 

1 • OOE+O0 

TAU 

o 

3 

6 

9 

12 

15 

18 

21 

24 

27 

SER I ES 

5,531E-04 

4,980E-02 

2,182E-01 

4,402E-01 

6,031E-01 

6,786E-01 

7,073E-01 

-3,681E+01 

-9,250E+04 

-6,870E+07 

NS 

1 

12 

15 

2O 

25 

25 

25 

25 

25 

25 

TABLE Ill : SL.,S(iii) T=..~0 

ERS PADE' NP ERP 

,0 5,531E-04 0 ,0 

9. E-07 4.980E-02 5 2,E-05 

5.E-06 2.182E-01 7 3 ,E-08  

8 .E-06 4,402E-01 9 4 ,E-08  

5,E-06 6,031E-01 12 7, E-11 

4, E-05 6,786E-01 12 6,E-12 

3. E-02 7,018E-01 12 8. E-09 

2, E+O0 7 • 065 E-01 12 2, E-09 

2.E+O0 7,071E-01 12 2. £-06 

2.£+00 7,071E-01 12 3.£-06 

LONG TI ME 

7.34E-02 

1.87E-01 

3.71E-01 

5.88E-01 

6.91E-01 

7 ,07E-0 l  

7,07E-01 

7.07E-01 

7,07E-01 



TAU 

0 

3 

6 

9 

12 

15 

18 

21 

24 

27 

SER I ES 

5 • 531 E-04 

5,279E-02 

2.224E-01 

4. 054E-01 

4. 638E-01 

3,972E-01 

3.01 OE-01 

2,240E+01 

3 ,109  E+04 

1. 018E+07 

NS 

1 

12 

14 

21 

25 

25 

25 

25 

25 

25 
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TABLE I V  : SLS( iv)  T=30  

ERS PADE' NP ERP 

.0 5,531E-04 0 .0 

7, E-07 5,279E-02 5 5.E-05 

9, E-06 2,224E-01 6 5, E-05 

3.E-06 4.054E-01 10 2.E-09 

I . E - 0 5  4 .63gE-01 12 2 , E - l O  

6 .E-04  3,972E-01 12 1 ,E-08  

2, E-O1 2,867E-01 12 3 .E-08  

2,E+O0 1.902E-01 12 1 ,E-07  

2, E+O0 1,223E-01 12 7. E-06 

2. E+O0 7. 808E-02 12 9. E-06 

CONVOLUTI ON 

5.531E-04 

5 .279E-02 

2,224E-01 

4 ,054E-01 

4 ,638E-01 

3.972E-01 

2 .867E-01 

1 ,902E-01 

1,223E-01 

7 ,808E-02 

TAtl 

0 

3 

6 

9 

12 

15 

18 

21 

24 

27 

SER I ES 

5,531E-04 

4 ,835E-02 

t .  597E-01 

1.575E-01 

-1 .583E-02  

- 1 , 4 0 0 E - 0 1  

-6 .051E-02  

2,030E+O1 

2,749E+04 

8,939E+06 

NS 

1 

12 

t6 

21 

25 

25 

25 

25 

25 

25 

TABLE V : SLS(v) T=.~O 

ERS PADE' NF' ERP 

.0  5 ,531E-04 0 ,0  

4, E-07 4. $35E-02 5 2, E-04 

8, E-06 1,597E-01 7 4, E-06 

4 .E-06  1,575E-01 10 5 ,E-08  

3, E-05 - 1 , 5 8 3 E - 0 2  12 5, E-06 

2. E-03 -1 .399E-01  12 2. E-05 

6. E-01 -7 ,035E-02  12 2, E-04 

2,E+O0 5 ,592E-02 12 4 .E-03  

2, E+O0 6,375E-02 12 5, E-03 

2, E+O0 - 2 .  870E-02 12 1, E+O0 

CONVOLUTI ON 

5,531 E-04. 

4.835E-02 

1,597E-01 

1.575E-01 

- 1 . 5 8 3 E - 0 2  

-1 ,399E-01  

- 7 , 0 3 5 E - 0 2  

5 ,590E-02 

6 ,556E-02  

- 1 . 3 8 1 E - 0 2  



X 

5,24 

4.81 

4.18 

4.18 

3.54 

2.90 

2,27 

1.63 

.99 

.35 

TABLE 

SERIES 

-5,358E-02 

-4.851E-02 

-3,807E-02 

-2,276E-02 

-2,011E-02 

-1,708E-02 

-1,373E-02 

-1,010E-02 

-6.707E-03 

-7.372E-03 

204 

Vl : THERMAL WAVES T= 

ERS PADE" ERP 

O. -5.358E-02 O. 

1, E-06 - 4 .  851 E-02 3. E-06 

7, E-06 -3.  807 E-02 I ,  E-05 

I ,E -05  -2,276E-02 2. E-05 

4, E-06 -2,011E-02 8, E-06 

5. E-06 - I ,  708E-02 3, E-07 

7.E-05 - I ,373E-02 6. E-07 

4. E-03 -1.  009 E-02 9 • E-06 

2, E-01 -6.  241 E-03 1, E-04 

4. E+O0 -2,263 E-03 3, E-03 

LONG TI ME 

w ~  

-2,56E-02 

-2.39E-02 

-2,39E-02 

-2.17E-02 

-1,89E-02 

-1,55E-02 

-1.16E-02 

-7.30E-03 

-2.67E-03 

X 

5.24 

4.81 

4.18 

4.18 

3.54 

2.90 

2.27 

1.63 

.99 

.35 

TABLE VII : ELASTIC WAVES T=~  

SERIES ERS PADE' ERP 

5.369E-01 O. 5.369E-01 O. 

7.  709E-01 4. E-06 7. 709E-01 6. E-05 

9.276E-01 4. E-06 9,276E-01 1.E-05 

9,785E-01 4. E-06 9. 785E-01 1. E-05 

9,811E-01 9.E-06 9.811E-01 1.E-05 

9 • 840E-01 4. E-06 9. 840E-01 8. E-07 

9.872E-01 4;E-06 9.872E-01 7, E-09 

9.906E-01 3. E-04 9.906E-01 8.E-07 

9,950E-01 1.E-02 9,942E-01 9, E-06 

1. O08E+O0 3. E-01 9,979E-01 7, E-05 

LONG TIME 

9,74E-01 

9.76E-01 

9.76E-01 

9,78E-01 

9.81E-01 

9.84E-01 

9.88E-01 

9.93E-01 

9,97E-01 
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FIGURE CAPTIONS 

I - 2 The response o f  a S .L .S .  w i t h  a = .5 For inpu t  ( i i )  and 

T = l , 3 , 5 ; 1 0 , 3 0 w 5 0 .  

3 -  4 The same as F i g u r e s  1 - 2 f o r  i n p u t  ( i i i )  

S - 6 Thermal and e l a s t i c  waves w i t h  s = .03 , ~= 1 .3  f o r  i n p u t  

E o ( t ) = Z ,  g o ( t ) = O  and T = 2 . 5 .  

7 -  8 The same as F i g u r e s  5 -  6 For  ~= .03 , ~= .9 
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APPLICATION OF METHODS FOR ACCELERATION OF CONVERGENCE 
TO THE CALCULATION OF SINGULARITIES OF TRANSONIC FLOWS* 

Andrew H. Van Tuyl 
Naval Surface Weapons Center 

White Oak Laboratory 
Silver Spring, Maryland 20910 

USA 

i. Introduction 

Initial value problems in gas dynamics which lead to transonic flows include 

the inverse blunt body problem, in which a bow shock wave in a uniform flow is 

given and the body whichwould produce it is calculated, and the inverse calculation 

of nozzle flows starting from data given on the centerline. Each of these problems 

can be expressed as an initial value problem for a second order quasi-linear 

differential equation satisfied by the stream function. 

When the initial curve and initial data are such that the initial curve is 

noncharacteristic, it follows from the Cauchy-Kowalewskl theorem [i, page 39] that 

the initial value problem can be solved in terms of power series in the neighborhood 

of a given point of the initial curve. However, the region of convergence of the 

series obtained may be too small for practical use, due to the occurrence of 

singularities, either real or complex, near the initial curve. This was found by 

Van Dyke [2] in the case of the inverse blunt body problem, where a limiting line** 

(envelope of characteristics) occurs in the upstream analytic continuation of the 

flow. This limiting line lies closer to the shock than the distance between the 

latter and the body, and hence, a power series solution in the neighborhood of a 

point of the shock diverges at the body and cannot be used directly to calculate 

the flow there. 

In [3], Leavitt has calculated the shape and position of this limiting line 

near the axis of symmetry by a modification of a method due to Domb [4], starting 

* This work was supported by the Naval Surface Weapons Center Independent Research 
Fund. 

**Also called limit line. 
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from the power solution of the inverse blunt body problem in the neighborhood of 

the nose of the shock. The location of the limiting line was then used to trans- 

form the series so that convergence was obtained at the body. More recently, 

Schwartz [5] has used Domb's method to calculate limiting lines in the flows 

produced by parabolic and paraboloidal shocks in a free stream of infinite Mach 

number. Various modifications and extensions of Domb's method have been applied to 

problems of statistical mechanics by Domb, Sykes, Fisher, and others ([6], for 

example). 

Limiting lines in solutions of the inverse blunt body problem have also been 

calculated by Garabedian and his students ([7] and [8]) by use of Garabedian's 

method of complex characteristics. 

Limiting lines may also occur in nozzle flows obtained from given centerline 

distributions of velocity or Math number. As in the case of blunt body flows, the 

region of convergence of a power series solution may be restricted by a limiting 

line even though the point about which the solution is obtained lles in the 

subsonic region. In nozzle design, it is of practical interest to know if a 

given centerline distribution leads to a limiting line which lies between a 

desired streamline and the axis of symmetry. 

A procedure for calculation of limiting lines will be described, starting 

from a power series solution, in which methods for acceleration of convergence 

are used. This procedure involves the ratio of successive coefficients of a 

power series, as in Domb's method, and a necessary requirement is therefore that 

the extent of the region of convergence in the direction of at least one of the 

coordinate axes should be determined by a limiting line. Sequences are constructed 

which converge to points on a limiting line and to its order k ~i. With the 

assumption that the single power series used in this calculation has only one 

singularity on its circle of convergence, it is proved that certain nonlinear 

(s) transformation defined by Shanks sequence transformations, including the e 1 

([9], page 39) accelerate the convergence of these sequences. 
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The results obtained hold also for analytic initial value problems for other 

equations or systems of equations in two independent variables, when the given 

equation or system of equations can be replaced by a characteristic system in two 

independent variables. In particular, limiting lines can be calculated by the 

present method in the one-dimensional unsteady flow produced by a given piston 

motion. Finally, the present method is also applicable to some of the series 

occurring in [6]. 

2. Limiting Lines of Order k 

In both the inverse blunt body problem and the inverse calculation of nozzle 

flows, the stream function @ satisfies a quasi-linear second order partial 

differential equation of the form 

a~xx + b~xy + C~yy + d = 0, (2.1) 

where the coefficients are analytic functions of their arguments. The independent 

variables denote cartesian coordinates in the two-dimensional case and cylindrical 

coordinates in the axially symmetric case. As in [i], pp. 491-493, (2.1) can be 

replaced by the system of characteristic equations 

y~ = h I x 

Y8 = h2 x8 

d 
pe + h2q e + ~ x = 0 (2.2) 

P8 + hlq8 + ~a x8 = 0 

~ - px - q y~ = 0 

where h I and h 2 are the roots of the equation 

ah 2 - bh + c = 0. (2.3) 

Real values of = and 8 correspond to values of x and y for which (2.1) is 

hyperbolic. It follows from the Cauchy-Kowalewski theorem that the solution of an 

analytic initial value problem for (2.2) in the real eB-plane is analytic. 
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Given a solution of (2.2) which is analytic in a domain D of the real 

~B-plane, the functions x(~,B) and Y(~,B) define a mapping which is one-to-one 

in any portion of D in which the Jacobian J = x yB-xBy ~ does not vanish. Let k~l 

be an integer, and let J and its derivatives of order up to and including k-i 

vanish along a curve C in D. Then the image of C in the xy-plane is defined to be 

a limiting line of order k. 

The well-known result ([i0], for example) that a regular arc of a limiting line 

of the first order is an envelope of one of the families of characteristics can 

also be shown to hold for limiting lines of order k>l. As in the case of 

limiting lines of first order, characteristics of the second family have infinite 

curvature at the limiting line for k>l. 

Finally, we can prove also that the behavior of flow quantities in the 

neighborhood of a limiting line of order k~l is given by the following theorem: 

Theorem i. Let a solution of (2.1) have a limiting line of order k~l with 

the equation x = Xo(Y), where Xo(Y) is analytic for yl<y<y2, and let the solution 

he analytic for Xl<X<Xo(Y) , yl<y<y 2. Let F(x,y) he any one of the flow variables. 

Then F(x,y) has an expansion of the form 

x ]n/(k+l) 
F(x,y) = n=o ~ an(Y) [i - x--~J 

for yl<y<y 2 and for Xo(Y)-X sufficiently small. 

3. An Asymptotic Result 

An asymptotic result on which the present method of calculation is based is 

given by the following theorem: 
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Theorem 2. Let f(z) be analytic for fzl  i except at z = I, with 

f(z) = ~ anzn , Izl < 1 
n = o  

= ~ bn(l-z)n/m, I i - z l  < n, larg(l-z)I < ~, 
n=o 

where m=2,3,.., is an integer. Then as n-> ~, we have 

m~ N-I 
a =(i/ b + j~_Icjn-J/m+ 
n \n/[o .= 

for any N>_2, where cj = o when J + I is divisible by m. 

by m, the error is 0(n-(N+l)/m). 

Proof. Let 

N+m-i 

f(z) = ~ bj(l-z) j/m + fl(z). 
j=o 

Then fl(z) is analytic for Izl __<i ekcept at z = i. Writing r=[N/m]+l, we see 

that derivatives of fl(z) up to and including the rth are continuous on 

I zl=l, while the (r+l)st is discontinuous on I zI=l at z=l, but integrable there. 

0 (n-N/m)} 

When N + I is divisible 

Then with 

fl (z) = ~ a(1)n zn' Izl < i, 
11=O 

it is e a s i l y  shown by use  of Cauchy 's  theorem t h a t  a (1) I=O(n - r - l )  as n--~. The 
n 

stronger result fan (I) l=o(n -r-l) can be shown to hold by use of the Riemann-Lebesgue 

le~,na, but  the  weaker r e s u l t  i s  s u f f i c i e n t  f o r  the  p r e s e n t  purpose .  

Let N be such that bN#O. Then 

N-I 
a n  = 

where 
N+m-i 

J =N n " 
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It follows from Stirling's approximation that 

lim nl+l(~l< ~ 
n->~o 

for I>o. Hence, since [N/m] + 1 > N/m, we have 

lira a (1) /{N/m~ = O. 
n.--~ n \ n /  

It follows that when bN~O , Rn,N=0(n-N/m-l). Finally, by use of Stirling's 

approximation, we obtain the result stated. 

Corollary i. When bo#o , we have 

_ 3 , ' 2  . a n + z / a  n = ~ +. ~ d . n  - j - 1  + 0 (n  - N - l )  m = 2 
j=l 3 

= - l+i/m " + ~ d.n -j/m-I + 0(n -N/m-l) m > 2. 
j=l 3 

Corollary 2. When bo=0 but bl~O , 

a n + l / a  n = a - - - ~ ] {  + j--liE e . n  - ~ - l J  + O(n - N - l )  , m ~ 2 

= _ l+2/m 1 + E e.n-J/m-i + 0(n-N/m-l) m > 2. 
j=l 3 

A similar but more complicated theorem can be proved when there are several 

singularities on IzI=l, with a different value of m associated with each. With 

more than one singularity, however, the transformations used here become less 

effective. 

4. Sequences for Calculation of Limitin Z Lines 

Given an analytic initial value problem for an equation of the form of (2.1), 

let the origin be taken at a point of the initial curve, and let (Xo,0) be a 

point on a limiting line of order k ~i. Let F(x,y) be any one of the dependent 

variables, such as the density or pressure in the inverse blunt body problem, and 
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as described in the introduction, let F(z,0) be analytic for Izl ~ x ° except at 

z = x . This assumption, that only one singularity lies on the circle of 
o 

convergence, appears to be verified in special cases which have been calculated. 

We have 

F(z,o) = ~ anzn , Izl < x 
n= 0 o ' 

(4.1) 

and by Theorem i, 

in a cut neighborhood of z = x . 
O 

that when bo#0 in (4.2), 

(i l+i/(k+l)) an = x 
n+l an+ I o 

F(z,o) = n=O~ bn(l- xZ--) n/(k+l)o 

It follows from Corollary 1 of Theorem 2 

= X 
0 

N-I 1 i + ~ c.n -j-I + O(n -N-I) k = I 
J=l 3 

i + ~ c.n -j/(k+l)-I + O(n -N/(k+l)-l) , 
j=l 3 

(4.2) 

(4.3) 

k>2 

From (4.3), we obtain 

I 1 3 " 
= (Sn-l)(n+l)(n+2) = ~ i + ~ d.n -3 + 0(n -N) k = i r n 

j=l 3 

N-I 0 (n_N/(k+l ) } = (l+i/(k+l)) I + ~ d.n -j/(k+l) + ) , k~2 (4.4) 
j=l 3 

2 
when bo~0,  where  Sn=an+2an/an+ 1. N o t i n g  t h a t  ( n + 2 ) S n - ( n + l )  t e n d s  t o  u n i t y  as 

n-~o, we see that the sequence 

(Sn-l)(n+l)(n+2) 

(n+2)Sn_(n+l) (4.5) t = 
n 

tends to the same limit as the left hand side of (4.4), and we can show that 

it has the same asymptotic form as (4.4) as n-~. Denoting the coefficients of 

the asymptotic expression for t n by ej, we find that e I = d I when k~2. 

When k = i, however, we have d I = e I + 3/2. Thus, while t n and r n have the same 

rate of convergence, one may be asymptotically more accurate than the other. 
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When bo=0 but bl#0 , sequences similar to the preceding can be obtained by use 

of Corollary 2 of Theorem 2. By consideration of both the limit and the rate of 

convergence of tn, it is possible to determine k and to decide whether or not 

b vanishes. 
o 

5. Nonlinear Sequence Transformations 

Let A be a given sequence, and let 
n 

An+lAn 1-An 
B = . (5.1) 
n An+ l+An- i- 2An 

The sequence Bn is equal to the first order transform el(A n ) defined by Shanks [9] 

and to the sequence e~ n) ob ta ined  by the  e - a l g o r i t h m  of Wynn [11],  and i s  a l s o  

referred to as the Aitken 6 2 process. Under certain conditions, a convergent 

sequence A is transformed to a sequence B which has the same limit as A and 
n n n 

converges more r a p i d l y .  In  p a r t i c u l a r ,  the  l a t t e r  holds  when l im IAAn+I/AAnI#I. 
n..+~ 

When lim ' n'IAAn+l/AA I=l but lim AAn/ABn=S@I, the transformed sequence B converges 
n_>~ ~ n 

with the same rapidity as A . For this case, Shanks ([9], page 39) has defined 
n 

the transform 

sB -A 
~S)(A n n n (5.2) 

e )= s-l" 

A transformation equivalent to this, called Un, was also introduced by Lubkin [12]. 

Finally, Lubkin ([12], page 229) has introduced a more general transformation 

which is expressed in the present notation by 

AA 

BnA-- ~ - A n 
n 

Wn = AA 
n 1 

AB 
n 

(5.3) 

With the preceding definitions, we can verify the following theorems by direct 

calculation: 
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Theorem 3. Let a given sequence have the form 

N-I 
A = A + E a.n-J-~ + O(n-N-=) 
n . j 

3=o 

as n-~ o for all N~I. Then 

Corollary. 

N-I 
e (c~+l) I (An) = A + ~ b.n -j-~-2 + 0(n-N-~-2). 

j=o 3 

With the notation e~Sl)(e~S2)(An)) = e(Sl)e~S2)(An ), we have 

e(~+2r+l)^(~+2r-l) ... e(e+l)(An ) = A + 0(n -=-2r-2) 
=i 

Theorem 4. Let a given sequence have the form 

N-I 
A = A + ~ a.n -j/m-~ + 0(n -N/m-~) 
n j=l 3 

as n-~o for all N~2 where m = 2,3, .... Then 

e(l+e+i/m) ,. , 
i ~'~n ) 

N-I . 0(n_N/m_~) = A + ~ 5.n -3/m-~ + 
j=2 3 

for N = 3,4, .... 

Corollary. 

(lq~+r/m) (l+e+(r-l))/m e (l+~+I/m) (A) = A + 0(n-(r+l)/m-=). 
el el "'" I n 

Theorems 3 and 4 have direct application to the sequences of Section 4. 

In particular, with 

a 
A n (i- 3/2~ n__ 

= n---~" an+ I 
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in the case k = i, we see that 

el(2r+l)el(2r-l) ... e~3)(A) = x + 0(n -2r-2) 
o 

We see that the sequences A in Theorems 3 and 4 must have e > 0 and e > -i/m, 
n 

respectively, in order to be convergent. However, the theorems do not specify the 

sign of ~, and the corollaries show that the iterated transformations converge to 

A for sufficiently large values of r whether or not A converges. 
n 

Finally, the following theorems for W are nearly identical with the preceding: 
n 

Theorem 5. Let a given sequence have the form 

N-I 
A = A + ~ a.n -j-~ + O(n -N-e) 
n j=o 

as n ->~ for N = 1,2, .... Then 

N-I 
W = A + ~ c.n -j-e-2 + O(n-N-~-2), 
n j=o J 

Theorem 6. Let a given sequence have the form 

N-1 
A = A + ~ a.n -j/m-~ + 0(n-N/m-a). 
n j=l 3 

as n ->~ for N = 2,3,... where m = 2,3, .... Then 

N-I 0 (n -N/m-a) 
W = A + ~ c.n -j/m-~ + 
n j=2 3 

for N = 3,4 .... Corollaries which are exactly parallel to the corollaries of 

Theorems 3 and 4 clearly hold. 
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6. Numerical Examples 

The sequences of Section 4, together with the sequence transformations of 

Section 5, have been applied to the calculation of limiting lines of first order 

in the inverse blunt body problem and in the calculation of nozzle flows. The 

calculation of the axial point on the upstream limiting line in the case of a 

paraboloidal shock at a free stream Mach number of 2 is shown in Table I, which 

was calculated by use of 39 coefficients of the power series for the density. 

Calculations were carried out on the CDC 6500 in double precision, using the 

method of [13]. The sequences r and 
n 

e~ 2) ,- showing that the transformation 

order, and that b #0 in the expansion 
o 

limiting line. Values of rn, tn, and 

t is preferable to r in this case. 
n n 

using the power series for the stream 

the limit 5/2. Thus, it appears that 

t converge to 3/2 and are accelerated by 
n 

the upstream limiting line is of first 

of the density in the neighborhood of the 

e~2)(tn ) are given in Table 2, and show that 

When the same calculations are repeated 

function, it is found that r n and t n approach 

bo=0 while bl#0 in the expansion of the 

stream function in the neighborhood of the axial point of the limiting line. 

The rates of convergence shown in Section 5 cannot usually be realized 

(3) when using single precision, because of loss of beyond the transformation e 1 

significance due to subtraction. However, the accuracy obtained by use of e~ 3)- in 

single precision has been found to be sufficient in all examples calculated. 

Agreement of successive terms of the sequence to 5 or 6 significant figures is 

usually obtained. 

Finally, calculations of limiting lines in nozzle flows have been carried out 

in single precision on the CDC 6500 using e~ 3). The result of such a calculation 

is shown in Figure 1 in the axially symmetric case, where u = 1 + (%/3/2)x on the 

centerline. This centerline velocity distribution is the same as that of case (f) 

of [14] after a change of reference quantities. The sonic line, limiting 

characteristic, and streamlines were calculated by the method of [15]. All 
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calculations were carried out using 25 terms of the series in y, and convergence 

to 5 or more figures was found except near the limiting line. With the use of 

double precision, the more rapidly convergent transformation e(5)e(3)(A ~ would 
i i n" 

give additional aceuracy. 

The portion of the streamline ~ = 0.2 to the left of the limiting character- 

istic can be taken as the wall of a nozzle in the subsonic and transonic regions, 

since the flow is analytic on the limiting characteristic up to and on the 

streamline. However, the streamline ~ = 0.45 meets the limiting line above its 

point of tangency with the limiting characteristic, and cannot be used as part of 

a nozzle contour. The dashed portion of the limiting characteristic belongs to a 

second solution of the flow equations having the limiting line shown. The two 

solutions correspond to the same analytic solution of equations (2.2) in the 

• i 

~8-plane, but on opposite sides of the curve J =, 0 which corresponds to the 

limiting line. 
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Table i. 

2 2 2  

Distance of Upstream Limiting Line from Nose of Shock for Paraboloidal 

Shock Wave r 2 = 2x with Free Stream Maeh Number = 2. 

n An = -(I - n+l'an+ 1312~an e~3)(An) el(5)e(3)(An)l 

34 

35 

36 

37 

0.083546753454 

.0835466622853 

.0835465789026 

.0835465024447 

0.0835451981166 

.0835451980201 

.0835451979365 

.0835451978019 

0.0835451972856 

.0835451972406 

.0835451972874 

.0835451972615 

Table 2. Sequences r and t Corresponding to Axial Point on Upstream Limiting 
n n 

Line for Paraboloidal Shock Wave r 2 = 2x with Free Stream Mach Number = 2. 

n r t e~2)(tn ) 
n n 

34 1.5685409 1.5012612 1.5000020 

35 1.5665483 1.5012223 1.5000018 

36 1.5646684 1.5011858 1.5000017 

37 1.5628918 1.5011514 1.5000016 
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Figure i. Limiting line in the nozzle flow with centerline velocity distribution 
u = 1 + ( / ' 3 / 2 ) x .  
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i. Introduction 

In nozzle design, flow calculations are usually carried out by an inverse 

procedure in which either the Mach number or velocity is given on the centerline. 

Calculations in the supersonic region can be carried out accurately by the method 

of characteristics when the solution in the transonic region is known. However, the 

inverse problem is improperly-posed in the subsonic region, and it is therefore not 

possible to calculate the subsonic and transonic portions of the flow to arbitrary 

accuracy by means of finite-difference marching procedures without the use of 

complex extension. Methods for calculating the flow in the transonic region 

([i], for example) are mainly applicable to the design of nozzles with large 

throat radius of curvature, such as wind tunnel nozzles. These methods are not 

sufficiently accurate for the design of short nozzles, since rapid changes then 

occur near the throat. Improved accuracy in the case of short nozzles is given by 

[2], but the accuracy which can be obtained is limited by the fixed number of terms 

of the power series used. Short nozzles with a uniform exit flow are of interest 

in connection with gas dynamic lasers [3], where two-dimensional nozzles have been 

used, and with chemical lasers [4], where both two-dimensional and axially symmetric 

nozzles are applicable. More accurate subsonic calculations have been carried out 

in the axially symmetric case by Armitage [5] and Rao and Jaffe [6] by means of 

Garabedian's method of complex characteristics [7, 8]. Calculations by the method 

of complex characteristics have also been carried out by Solomon [9] in the two- 

dimensional and axially symmetric cases. 

*This work was supported by the Naval Surface Weapons Center Independent 
Research Fund. 
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When the flow quantity given on the centerline is analytic, it follows from 

the Cauchy-Kowalewski theorem ([i0], page 39) that the inverse problem can be 

solved in terms of power series in the neighborhood of a given point of the 

eenterline. While these series are known to converge near the given point, the 

region of convergence may be such that the series are either divergent or too 

slowly convergent at points of physical interest. It was noted by Van Dyke [ii] 

that the former occurs in the case of the inverse blunt body problem, due to the 

presence of a limiting line (envelope of characteristics) in the upstream analytic 

continuation of the flow. This limiting line lies closer to the shock than the 

distance between the shock and the body, and hence, the body does not lie within 

the region of convergence of the series. However, it was found in [12], [13], 

and [14] that Pade" fractions formed from these series give accurate results at the 

body, and can be used to compute the flow there. A similar procedure has been 

used in [15], where Pade" fractions are formed from certain power series in the 

neighborhood of points of the centerline. As in the case of the inverse blunt 

body problem, examples indicate that the use of Pade" fractions leads to convergence 

when the series diverge, and that convergence is accelerated when the latter 

converge. The region of convergence of the series may be restricted by limiting 

lines, as in the blunt body problem, or by complex singularities. Accurate 

calculations can also be carried out in the supersonic region by use of Pade" 

fractions when limiting lines do not occur near the centerline. Near a limiting 

line, convergence of both the series and the sequences of Pade" fractions is found 

to be slow. 

The present paper extends [15] by investigating additional ways in which Pade" 

fractions can be used in the calculation of nozzle flows. In particular, Pade" 

fractions are formed from power series along given curves which intersect the 

centerline. By use of these results, more efficient use of the double Taylor 

expansions obtained in [15] can be made. 
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2. Power Series Solution of the Inverse Problem 

The coordinate system used is shown in Figure i, where x and y denote 

Cartesian coordinates in the two-dimensional case and cylindrical coordinates in 

the axially symmetric case, and where the origin is at the sonic point on the 

centerline. We will assume irrotational flow of a perfect gas with ratio of 

specific heats y. Let p* = c* = i, where p* is the critical density and c* is the 

critical sound speed, and let the stream function satisfy 

u = (i/py°)~/~y, v = - (i/pyO)~/~x, (2.1) 

where u and v are the x and y components of velocity, respectively, p is the 

density, and ~ = 0 and i, respectively, in the two-dimensional and axially 

symmetric cases. Substituting (2.1) into Bernoulli's equation and the condition 

for irrotationality, we obtain 

(i/y2O)(~x 2 + ~y2) + [2/(y-1)]py+l _ [(y+l)/(y_l)]p2 = 0 (2.2) 

and 

+ ~yy _ oy-l~y) _ Px~x _ py~y = O, (2.3) P(~xx 

respectively. 

Let the density, Mach number, and velocity on the centerline be denoted by 

Po(X), Mo(X) , and Uo(X) , respectively. Then Po(X) is given in terms of Mo(X) by 

the relation 

Po = {2/(y+l) 

and in terms of Uo(X), by 

and 

+ [ (y-i) / (y+l) ]Mo2} -I/(y-i), (2.4) 

Po = { (7+1)/2 - [(Y-I)/2]Uo2}I/(y-I)" (2.5) 

Let M (x) and Uo(X) have the expansions 
0 

Mo(X ) = ~ Mi(X-Xl)i-1 (2.6) 
i=i 

Uo(X ) ~ ui(x-xl )i-I (2.7) 
i=l 
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in the neighborhood of x = x I. 

coefficients Pi of the expansion 
¢o 

(x) = .i__~l Pi(X-Xl)i-I (2.8) Po 

by use of (2.4) or (2.5) respectively, and subroutines for power series 

manipulations. We can then find the solution of the inverse problem in the 

neighborhood of the point (Xl, 0) in the form 

4"= ~ ~ ~ij y2i-l+~(X-Xl)J-l' (2.9) 
i=l j=l 

j--~l 2i-2 (X-Xl) J-l" P = Pij y (2.10) 
i:1 "= 

Given either (2.6) or (2.7), we can find the 

We see that PlJ = PJ" To summarize the calculation of the remaining 

coefficients, let the left hand sides of (2.2) and (2.3) be denoted by A and B, 

respectively. We have 

A = ~ ~ y2i-2(X-Xl )j-I (2.11) 
i=l j=l ai~ 

and 

For J~2, we find that 

where 

411 

and where alj 

B = ~ ~ bij y2i-l+O(x-xi)J-i 
i=l j=l 

(2.12) 

alj = 2(i+~)241141j + a~j, (2.13) 

= [i/(I+~) ]{[ (y+l)/(y-1) ]Pll 2 - [2/(y-l) ]PllY+l} I/2 (2.14) 

does not involve ~lj" For i>_2, we have 

aij = CI 4ij + C2 Pij + a~j, 
(2.15) 

bij = C3 4ij + C4 Pij + b~j, 
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where 

and where a~j 

C I 

C 2 

C 3 = 2(2i-l+~)(i-l)Pll , 

C 4 = -2(l+q)(i-l)~ll. 

and b~j do not involve ~ij and Pij" 

= 2(i+0)(21-i+~)~ii , 

: [ 2 ( y + l ) / ( y - l ) ] ( P l l Y - P l l  ) ,  
(2.16) 

The calculation of the remaining 

coefficients can now be described as follows: First, ~lj is calculated by setting 

alj = 0 in (2.13) for j = 2, 3, .... For each j, a~j is found by setting ~lj = 0 

and calculating alj. The coefficients ~iJ and Pij are then found for i ~ 2 by 

setting aij and bij equal to zero in (2.15) and solving the resulting pair of 

equations simultaneously. For given i and j, a~j and b~j are obtained by setting 

~ij and PiJ equal to zero and calculating aij and bij. Assuming that Pi is known 

for i ~ i ~ 2K - i, we can find ~ij and Pij for i ~ i ~ K and i ~ J ~ 2K - 2i + i. 

3. Pade" Fractions 

Let 

f(z) = ~ c.z i (3.1) 
i 

i=0 

be a given power series with c o @ O. Then Pade" fractions fk,n(Z), k ~ 0, n ~ O, 

are defined as follows: fk,n(Z) is a rational fraction with numerator and 

denominator of degrees less than or equal to n and k, respectively, such that 

the Taylor expansion of fk,n(Z) in the neighborhood of the origin agrees with 

(3.1) to more terms than that of any other rational fraction with numerator of 

degree < n and denominator of degree ~ k ([16], page 377). This fraction always 

exists and is unique. Convenient methods of calculation include the QD algorithm 

of Rutishauser [17] and the ~ - algorithm of Wynn [18]. 

The sequence fn,n(Z), which involves the first 2n + i terms of (4.1), is 

often found to converge much more rapidly than sequences in which either k or n 
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remains constant. The convergence of fn,n(Z) has been proved only for special 

classes of functions, and none of the available convergence results appears to be 

directly applicable to the series occurring in either the inverse blunt body 

problem or the inverse calculation of nozzle flows. In both [14] and [15], 

however, it was found that the sequence fn,n(Z) converges in most cases when the 

series diverges, and that it accelerates convergence when the latter converges. 

4. Power Series for Constant x 

Before Pade" fractions can be used, the solution of the inverse problem must 

be expressed in terms of power series in one variable. One approach is to write 

(2.9) and (2.10) as single power series in y with coefficients which are functions 

of x. We have 

@ ~ ' , , 2i-i+~ = ~i~x;y (4.1) 
i=l 

and 

where 

and 

oo 

y2i-2, 
p = Pi(X) 

i=l 

~i (x) = ~ ~ij (X-Xl)J-i 
j=l 

(4.2) 

(4.3) 

Pi (x) = ~ Pij(X-Xl)J-i (4.4) 
j=l 

when Ix - Xll and y are sufficiently small. The coefficients ~i(x) and Pi(X) can 

he calculated by use of Pade" fractions for a given value of x, after which Pade" 

fractions can be formed from (4.1) and (4.2). Pade" fractions formed from (4.3) 

and (4.4) are exact at x = Xl, but their accuracy decreases in general as 

Ix - Xll increases. In a given case, however, it may be possible to find an 

interval about x I throughout which acceptable accuracy is obtained. It would be 

more economical to use several such intervals with overlapping regions of validity 

than to solve the inverse problem for each value of x. 
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In nozzle calculations, expansions in powers of 4 may be more convenient than 

(4.1) and (4.2). We know by the Cauchy-Kowalewski theorem that for x sufficiently 

near Xl, (4.1) has a nonzero radius of convergence. Assuming that ~l(X) is not 

zero for a given x, we can invert (4.1) to obtain an expansion of the form 

y = ~ Yi(X) 4 2i-1 (4.5) 
i=l 

in the two-dimensional case, and 

2 ~ Yi(x) ~i y = (4.6) 
i=l 

in the axially symmetric case for sufficiently small 4. By substituting (4.5) or 

(4.6) in (4.2), we can obtain an expansion for 0 in powers of 4. Similarly, 

starting from the Taylor expansion of other flow quantities in the neighborhood of 

(Xl, 0), we can find their expansions in powers of 4 for constant x. 

5. Power Series Along Given Curves 

Another procedure for expressing the solution of the inverse problem in terms 

of power series in one variable is to calculate ~ and 0 along given curves through 

(Xl, 0). Families of such curves can be chosen which sweep out a neighborhood of 

(Xl, 0). Let the equation of a given curve be x - x I = g(y), where 

g(y) = ~ gi yi 
i=l 

for sufficiently small y. On substituting x - x 1 

obtain expansions of the forms 

4 = ~ aiyi+° 
i=l 

and 

(5.1) 

= g(y) in (2.9) and (2.10), we 

(5.2) 

i-i 
0 = ~ biY , 

i=l 
(5.3) 

respectively. With the equation of the given curve written in the alternate form 

y = g(x - Xl) , y is replaced by x - x I in (5.1) through (5.3). In the special 

case when g(y) is a function of y2, we have 
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and 

= ~ aiy2i-l+a 

i=l 
(5.4) 

2i-2 
0 = ~ biY (5.5) 

i=l 

along the given curve. We see that the coefficients a. and b. in (5.2) through 
I 1 

(5.5) are known exactly, while the coefficients of (4.1) and (4.2) for x # x I are 

known only approximately. In addition, ~i(x) and Pi(x) become less accurate for a 

given x as i increases, since the number of terms of their Taylor expansions 

which are available then decreases. However, the accuracy obtained in a particular 

case is dependent on the choice of Xl, and can be determined only by trial. 

As in section 4, if a I @ 0, we can invert (5.2) to obtain 

y = ci~ (5.6) 
i=l 

in the two-dimensional case and 

y = ~ di~i/2 
i=l 

in the axially symmetric case for sufficiently small ~. 

(5.4), we have 

y = ~ c 
2i-1 

i* 
i = l  

in the two-dimensional case, and 

(5.7) 

Similarly, if a I ~ 0 in 

(5.8) 

2 " 
y = ~ di~l (5.9) 

i=l 

in the axially symmetric case. By use of the preceding expansions for y, we can 

obtain expansions for 0 and other flow quantities along the given curve in powers 

of ~ or ~i/2. 

A special case of an expansion along a curve of the form x - x I = g(y2) is 

given by the expansions at constant potential of [15]. The equation of the 

equipotential through the point (Xl, 0) is of the form 

2 i  
x - x I = piy (5.10) 

i=l 
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The calculation of the coefficients Pi' starting from the coefficients of (2.9) 

and (2.10), is described in detail in [15]. 

We see that the special choices g(y) = ~y and g(y) = ~y2 correspond to 

Moran's procedure in [13]. In [13], a double power series in x and y is written 

so that terms of the same degree in x and y jointly are grouped together. The 

given series is then expressed as a power series in one of the variables with 

coefficients which are polynomials in the ratio of the variables, and this ratio 

is held constant in a given calculation. The use of the above choices for g(y), 

after making the substitution y = z I/2 in the second, is seen to be equivalent to 

Moran's procedure. 

In the preceding two cases, it is possible to obtain the coefficients a i and 

b i explicitly as polynomials in ~. In the case x - x I = ey (or y = a(x - Xl)), 

a more symmetrical approach is to transform (2.9) and (2.10) to polar coordinates 

r and 8 with origin at (Xl, 0). On substituting x - x I = r cos e and 

2 2 
y = r (I - cos28) in (2.9) and (2.10), we obtain power series in r for ~/yl+O 

and p with coefficients which are polynomials in cos 8. 

6. The Equation of the Sonic Line 

The equation of the sonic line has an expansion of the form 

x = ( 6 . 1 )  
i= I siY 

in the neighborhood of the origin both in the two-dimensional and axially 

symmetric cases. We can calculate the coefficients s. successively by substituting 
1 

(6.1) in the left hand side of the equation 

oijy2i-2x j - l o  1 (6.2) 
i=1 j=l 

and equating the coefficients of powers of y2 past the constant term to zero. 

This calculation can be carried out on a computer by use of subroutines for power 
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series manipulations. Finally, we can obtain power series for flow quantities 

along the sonic line by substituting (6.1) or its inversion in their Taylor 

expansions in the neighborhood of the origin. 

7. The Equation of the Limitin$ Characteristic 

As shown in Figure i, the limiting characteristic is the right-running 

characteristic which passes through the origin. In both the two-dimensional and 

axially symmetric cases, the two families of characteristics satisfy the equations 

dy/dx = tan (8±~), (7.1) 

and tans = (M 2 - 1) -1/2 . Making these substitutions, we where tan8 = - ~x/~y 

obtain 

[-~x(M2-1) I/2 ± ~y]dx/dy - ~y(M2-1) I/2 ~ ~x = 0. (7.2) 

The equation of the limiting characteristic has an expansion of the form 

x = 2i (7.3) ~ r iY 
i = l  

f o r  s u f f i c i e n t l y  s m a l l  y.  Denot ing  t h e  l e f t  hand s i d e  of (7 .2 )  by C, we f i n d  t h a t  

C = £ e i  y 2 i - l + e  (7 .4 )  
i = l  

On s e t t i n g  c 1 = 0 and p r o c e e d i n g  as i n  [15 ] ,  we o b t a i n  

r 1 = (~+1)P12/4 (7 .5 )  

i n  t he  t w o - d i m e n s i o n a l  ca se ,  and 

r I = (/5-i) (y+l)P12/8 (7.6) 

in the axially symmetric case. We note that both values are negative, since 

P12 is negative. We can verify that 

c. = - [2i - (y+l)Pl2/2dl]ri + c~, (7.7) i 

where cf does not involve r.. Finally, in order to determine r i for i ~ 2, we 
1 1 

start from (7.5) in the two-dimensional case and (7.6) in the axially symmetric 

case, and calculate 



235 

r i = c~/[2i - (y+l)Pl2/2dl] , (7.8) 

for i = 2, 3, .... For each i, the calculation of cf is carried out by setting 
l 

r° = 0 and calculating c.. 
1 1 

After the coefficients r i have been determined, we can find power series for 

flow quantities along the limiting characteristic by substituting (7.1) or its 

inversion in their Taylor expansions in the neighborhood of the origin. 

8. Numerical Results and Discussion 

As in [15], calculations have been carried out on the CDC 6400 in the axially 

symmetric case with y = 1.4, using the velocity on the centerline given by 

example (c) of [6]. Coefficients of the Taylor expansions (2.9) and (2.10) are 

computed for i ~ 25 in these calculations, and hence, with the maximum value of j 

equal to 49. The centerline velocity of example (c) is given in terms of the 

present coordinates and reference quantities by 

= A I + A2/[A 3 + (x-A4)2]2 , (8.1) u 

where A 1 = 0.0657267, A 2 = 3.1224458, A 3 = 1.7125400, and A 4 = 0.34000641. This 

centerline velocity is shown in Figure 2. In the present units, the value of the 

stream function which defines the nozzle contour in [6] becomes ~ = 0.31104. 

Figure 3 shows the calculated nozzle contour, sonic line, and limiting 

characteristic for the eenterline velocity of example (c). Equipotential ~urves 

are also shown, as calculated in [15] by means of Pade" fractions formed from 

expansions of x - x I and y2 in powers of 4. Points on the nozzle contour were 

calculated by use of Pade" fractions formed from expansions in powers of y2 or 

for x = x I. The sonic line was calculated in two ways, by solving the equation 

p = 1 by Newton's method with the left hand side replaced by a Pade" fraction, 

and by forming a Pade" fraction from (6.1). In the present example, the former 

method was found to be more accurate than the latter for y > 0.6. Finally, the 

limiting characteristic was calculated in [15] by means of a Pade" fraction formed 

from the right hand side of (7.3). Comparison is made with the calculations of 

[6] and [9] by the method of complex characteristics. 
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Similarly, Figure 4 compares the flow angle calculated in [15] with the 

calculations of [6] and [9]. The calculations of [15~ were carried out by means 

of Pade ~ fractions formed from power series in y2 for x = x I. 

In Tables 1 and 2, Pade" fractions of the form fn,n(Z) are compared with the 

corresponding partial sums of the series (4.1) for x = x I = -I and for two values of 

y. The tables indicate that the sequence of Pade ~ fractions converges for both 

values of y, while the series converges for the smaller value of y and diverges for 

the larger. Tables 3 and 4 compare Pade" fractions and partial sums at the points 

(-i, I.i) and (-I, 1.6) for expansions of ~ in powers of y2 along parabolas of the 

form x - x I = ~y2 with x I = -3. Finally, Tables 5 and 6 give the same comparison 

for expansions of ~ in powers of y along the rays from (-3,0). The expansions 

along rays through (-3, 0) contain all powers of y up to and including y48, and 

hence, 49 coefficients are found in the present calculations. We note that these 

expansions use all 625 of the coefficients ~ij obtained in the solution of the 

inverse problem, while only 325 are used by the expansions along parabolas. The 

series converges for both values of y in Tables 3 through 6, but more slowly than 

the sequence of Pade" fractions. 

Comparison of Tables 4 and 6 shows that the expansion along a straight line 

through (-3, 0) leads to more rapid convergence of the sequence of Pade" fractions 

at (-i, 1.6) than the expansion along a parabola, while both tables show more rapid 

convergence than Table 2. We see that the expansion along x = -i used in Tables 1 

and 2 is a special case both of an expansion along a straight line through (-i, 0) 

and of an expansion along a parabola. It follows that the most suitable center of 

expansion (xl, 0) in a particular case is not necessarily the one nearest the point 

at which the flow is c~iculated. Further calculations show that the portion of the 

nozzle contour shown in Figure 3 can be calculated to 4 figures or more for x < -0.5 

by means of Pade" fractions formed from power series along rays through (-3, 0). 

The remaining portion of the nozzle contour in Figure 3 can be calculated by use of 

Pade" fractions formed from expansions along rays through the origin and through the 

point (-0.25, 0). This method is found to be more economical than the procedure of 
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section 4, in which ~i(x) and Pi(X) are calculated by means of Pade fractions, 

since the range of x for which the latter are sufficiently accurate becomes small 

for i ~ 15 in the present calculations. The time required to find expansions along 

a given ray through (Xl, 0) when ~ij and PiJ are known is much less than that for 

solution of the inverse problem. 
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Table I. Pade" fractions for stream function at (-i, i.i) from power series 
on the line x = -i. 

No. of terms Series Pade" fractions 

ii 0.22136847 0.22138164 
13 0.22139025 0.22138385 
15 0.22137986 0.22138366 
17 0.22138595 0.22138367 
19 0.22138235 0.22138366 
21 0.22138439 0.22138367 
23 0.22138328 0.22138367 
25 0.22138386 0.22138367 

Table 2. Pade" fractions for stream function at (-I, 1.6) from power series 
on the line x = -i. 

No. of terms Series Pade" fractions 

ii 0.86601815 0.32739899 
13 0.72548523 0.32960800 
15 -0.44164134 0.32908139 
17 1.9872070 0.32913508 
19 -3.3585190 0.32907155 
21 8.5084977 0.32911728 
23 -17.484076 0.32912434 
25 38.076299 0.32911631 
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Table 3. Pade ~ fractions for stream function at (-i, i.i) from power series 
along parabola through (-3, 0). 

No. of terms Series Pade" fractions 

ii 0.22082834 0.22139959 
13 0.22121951 0.22139261 
15 0.22135508 0.22140720 
17 0.22138460 0.22138378 
19 0.22138868 0.22138298 
21 0.22138819 0.22138362 
23 0.22138670 0.22138367 
25 0.22138537 0.22138366 

Table 4. Pade" fractions for stream function at (-i. 1.6) from power series 
along parabola through (-3, 0). 

No. of terms Series Pade ~ fractions 

ii 0.33051685 0.32899479 
13 0.32947504 0.32910273 
15 0.32910476 0.32913379 
17 0.32904116 0.32911671 
19 0.32906254 0.32911675 
21 0.32909083 0.32912158 
23 0.32910815 0.32911528 
25 0.32911519 0.32911678 

Table 5. Pade" fractions for stream function at (-i, i.i) from power series 
along straight line through (-3, 0). 

No. of terms Series Pade" fractions 

35 0.22138349 0.22138363 
37 0.22138358 0.22138366 
39 0.22138358 0.22138367 
41 0.22138363 0.22138367 
43 0.22138366 0.22138367 
45 0.22138366 0.22138367 
47 0.22138366 0.22138367 
49 0.22138367 0.22138367 
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Table 6. Pade" fractions for stream function at (-i, 1.6) from power series 
along straight line through (-3, 0). 

No. of terms Series Pade" fractions 

35 0.32910043 0.32913355 
37 0.32910691 0.32911442 
39 0.32910959 0.32911469 
41 0.32911685 0.32911464 
43 0.32911775 0.32911467 
45 0.32911594 0.32911474 
47 0.32911575 0.32911480 
49 0.32911506 0.32911470 
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Figure I. Schematic diagram of nozzle flow. 
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AND SOME RELATED MATTERS 

Claude BREZINSKI 

University of Lille 

The aim of this paper is to give a bibliography on Pad6 approximants, some 
related matters and applications. 

For several years, Pad6 approximants had become more and more important in 
mathematics, numerical analysis and various fields in physics and engineering. 
They are closely related to many subjects in mathematics as analytic function 
theory, difference equations, the theory of moments, approximation, analytic con- 
tinuation, continued fractions, etc. Then a whole bibliography should be a huge 
one to include the corresponding references of these disciplines. 

I have divided the references given in this paper into three sections. The 
first one deals with Pad6 approximation and I hope it is quite complete. The se- 
cond one is devoted to continued fractions and includes only some historical refe- 
rences and most of the recent papers on this subject. The thrid section contains 
some applications of Pad6 approximants with a special emphasis on mechanics ; I 
have also included references on numerical analysis and methods to accelerate the 
convergence of sequences. Miscellaneous references end the paper. 

It is obvious that this bibliography is far to be complete because of the 
limited number of pages of this volume. It is, in fact, less than half of a bigger 
bibliography on this subject and on all the related matters that I hope to publish 
in the future. I apologize in advance for any errors and omissions and I thank 
everybody who would send me any new reference on this subject. 
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